Skip to main content

Advertisement

Log in

Testicular Stem Cell Dysfunction Due to Environmental Insults Could Be Responsible for Deteriorating Reproductive Health of Men

  • Reproductive Biology: Perspective, Opinions and Commentaries
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Reproductive health of men has declined over time including reduced semen quality specifically sperm count, increased incidence of infertility, and testicular cancers. Our recent findings suggest that these disease states possibly arise as a result of disruption of testicular stem cells biology by perinatal insults including exposure to endocrine disrupting chemicals. Testicular stem cells include relatively quiescent, very small embryonic-like stem cells (VSELs), and actively dividing spermatogonial stem cells (SSCs). Both VSELs and SSCs express estrogen receptors and are directly vulnerable to endocrine disruption. Exposing mice pups to estradiol (20 μg/pup/day on days 5–7) or diethylstilbestrol (2 μg/pup/day on days 1–5) affected spermatogenesis during adult life with reduced numbers of tubules in stage VIII, tetraploid cells and sperm. These mice were infertile and majority of diethylstilbestrol treated mice revealed testicular cancer-like changes. An increase in VSEL numbers, observed by both flow cytometry and qRT-PCR, was associated with marked reduction of c-KIT positive spermatogonial cells. VSELs undergo epigenetic changes due to endocrine disruption that results in blocked differentiation (impaired spermatogenesis) leading to reduced sperm count and infertility, and their excessive self-renewal initiates cancer-like changes in adult life. Thus, testicular dysgenesis syndrome (TDS) has a stem cell rather than a genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

References

  1. De Jonge C, Barratt CLR. The present crisis in male reproductive health: an urgent need for a political, social, and research roadmap. Andrology. 2019;7:762–8.

    Article  PubMed  Google Scholar 

  2. Brenner DR, Heer E, Ruan Y, Peters CE. The rising incidence of testicular cancer among young men in Canada, data from 1971-2015. Cancer Epidemiol. 2019;58:175–7.

    Article  PubMed  Google Scholar 

  3. Skakkebaek NE, Jørgensen N, Andersson AM, Juul A, Main KM, Jensen TK. Populations, decreasing fertility, and reproductive health. Lancet. 2019;393:1500–1.

    Article  PubMed  Google Scholar 

  4. Barratt CLR, De Jonge CJ, Sharpe RM. ‘Man up’: the importance and strategy for placing male reproductive health centre stage in the political and research agenda. Hum Reprod (Oxf Engl). 2018;33:541–5.

    Article  Google Scholar 

  5. Levine H, Jørgensen N, Mendiola A, Weksler-Derri D, Mindlis I, Pinotti R. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;1–14.

  6. Trabert B, Chen J, Devesa SS, Bray F, McGlynn KA. International patterns and trends in testicular cancer incidence, overall and by histologic subtype, 1973-2007. Andrology. 2015;3(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  7. Sengupta P, Borges E Jr, Dutta S, Krajewska-Kulak E. Decline in sperm count in European men during the past 50 years. Hum Exp Toxicol. 2018;37(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  8. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? 1993;341(8857) 392–6.

  10. Sharpe RM. The ‘oestrogen hypothesis’–where do we stand now?1. Int J Androl. 2003;26:2–15.

    Article  CAS  PubMed  Google Scholar 

  11. Xing JS, Bai ZM. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci. 2018;194:120–9.

    Article  CAS  PubMed  Google Scholar 

  12. Patel DP, Jenkins TG, Aston KI, Guo J, Pastuszak AW, Hanson HA, et al. Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of “big data”. Fertil Steril. 2020;113(3):478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tüttelmann F, Ruckert C, Röpke A. Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet. 2018;30(1):12–20.

    PubMed  PubMed Central  Google Scholar 

  14. Colpi GM, Francavilla S, Haidl G, Link K, Behre HM, Goulis DG, et al. European Academy of Andrology Guideline Management of oligo-astheno-teratozoospermia. Andrology. 2018;6:513–24.

    Article  CAS  PubMed  Google Scholar 

  15. Yang X, Zhang H, Jiang Y, Zhang H, Hu X, Zhu D, et al. Association study between MTRR, TAF4B, PIWIL1 variants and non-obstructive azoospermia in Northeast Chinese Han population. Clin Lab. 2018;64(10):1731–8.

    CAS  PubMed  Google Scholar 

  16. Crockford GP, Linger R, Hockley S, Dudakia D, Johnson L, Huddart R, et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum Mol Genet. 2006;15(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  17. Litchfield K, Loveday C, Levy M, Dudakia D, Rapley E, Nsengimana DJ, et al. Large-scale sequencing of testicular germ cell tumour (TGCT) cases excludes major TGCT predisposition gene. Eur Urol. 2018;73(6):828–31.

    Article  CAS  PubMed  Google Scholar 

  18. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–84.

    Article  CAS  PubMed  Google Scholar 

  19. Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, Patwardhanet S. al. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem. 2010;58(12):1093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anand S, Bhartiya D, Sriraman K, Mallick A. Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Rev. 2016;12:682–97.

    Article  CAS  Google Scholar 

  21. Patel H, Bhartiya D. Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reprod Sci. 2016;11:1493–508.

    Article  CAS  Google Scholar 

  22. Kurkure P, Prasad M, Dhamankar V, Bakshi G. Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reprod Biol Endocrinol. 2015;13:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs). Circ Res. 2019;124:208–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaikh A, Anand S, Kapoor S, Ganguly R, Bhartiya D. Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Rev Rep. 2017;13:202–16.

    Article  CAS  PubMed  Google Scholar 

  25. Anand S, Patel H, Bhartiya D. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reprod Biol Endocrin. 2015;13:33. https://doi.org/10.1186/s12958-015-0031-2.

    Article  CAS  Google Scholar 

  26. Bhartiya D, Anand S, Kaushik A. Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Lett Editor Hum Reprod Update. 2020;26(1):136–7.

    Google Scholar 

  27. Sharma SJ, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update. 2019;3:275–97.

    Article  CAS  Google Scholar 

  28. Sharma S, Wistuba J, Neuhaus N, Schlatt S. Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Hum Reprod Update. 2020;26(1):138.

    Article  PubMed  Google Scholar 

  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  30. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20(5):857–69.

    Article  CAS  PubMed  Google Scholar 

  31. Abbott A. Doubt cast over tiny stem cells. Nature. 2018;390.

  32. Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, Chan CKF, et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep. 2013;1:198–208.

    Article  CAS  Google Scholar 

  33. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R, et al. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia. 2014;28:473–84.

    Article  CAS  PubMed  Google Scholar 

  34. Bhartiya D. Stem cells survive oncotherapy & can regenerate non-functional gonads: A paradigm shift for oncofertility. Indian J Med Res. 2018;148:38–49.

    CAS  Google Scholar 

  35. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76:843–56.

    Article  CAS  PubMed  Google Scholar 

  36. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaushik A, Bhartiya D. Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Rev and Rep. 2020;16:992–1004. https://doi.org/10.1007/s12015-020-09993-6.

    Article  CAS  PubMed  Google Scholar 

  38. Guo J, Nie X, Giebler M, Mlcochova H, Wang Y, Grow EJ, et al. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell. 2020;26(2):262–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gage FH. Adult neurogenesis in mammals. Science. 2019;364(6443):827–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kaushik A, Anand S, Bhartiya D. Altered biology of testicular VSELs and SSCs by neonatal endocrine disruption results in defective spermatogenesis, reduced fertility and tumor initiation in adult mice. Stem Cell Rev and Rep. 2020. https://doi.org/10.1007/s12015-020-09996-3.

  41. Nanjappa MK, Medrano TI, Mesa AM, Ortega MT, Caldo PD, Mao J, et al. Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposure. Biol Reprod. 2019;101(2):392–404.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mitchell RT, Camacho-Moll M, Macdonald J, Anderson RA, Kelnar CJ, O’Donnell M, et al. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol. 2014;27(9):1255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rijlaarsdam MA, van Herk HA, Gillis AJ, Stoop H, Jenster G, Martens J, et al. Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours. Br J Cancer. 2012;106(4):791.

    Article  PubMed Central  Google Scholar 

  44. Jones TD, Ulbright TM, Eble JN, Cheng L. OCT4: a sensitive and specific biomarker for intratubular germ cell neoplasia of the testis. Clin Cancer Res. 2004;10(24):8544–7. https://doi.org/10.1158/1078-0432.CCR-04-0688.

    Article  CAS  PubMed  Google Scholar 

  45. Looijenga LH, Stoop H, de Leeuw HP, de Gouveia BC, Gillis JM, van Roozendaal KEP, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003;63(9):2244–50.

    CAS  PubMed  Google Scholar 

  46. Strohsnitter WC, Noller KL, Hoover RN, Robboy SJ, Palmer JR, Titus-Ernstoff L, et al. Cancer risk in men exposed in utero to diethylstilbestrol. J Natl Cancer Inst. 2001;93(7):545–51.

    Article  CAS  PubMed  Google Scholar 

  47. Kao L-T, Lin H-C, Chung S-D, Huang C-Y. Association between testicular cancer and epididymoorchitis: a population-based case-control study. Sci Rep. 2016. https://doi.org/10.1038/srep23079.23079.

  48. Kaushik A, Bhartiya D. Pluripotent very small embryonic-like stem cells in adult testes-an alternate premise to explain testicular germ cell tumors. Stem Cell Rev Rep. 2018;14(6):793–800.

    Article  CAS  PubMed  Google Scholar 

  49. Ratajczak MZ, Bujko K, Mack A, Kucia M, Ratajczak J. Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. 2018;32:2519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keenen B, de la Serna IL. Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J Cell Physiol. 2009;219(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  51. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O’Gorman S, Hunter T. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nat Genet. 2004;24(2):157–62.

    Article  CAS  Google Scholar 

  52. Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, et al. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 2000;19(6):1312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shirakawa T, Yaman-Deveci R, Tomizawa S, Kamizato Y, Nakajima K, Sone H, et al. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a kitpositive identity. Development. 2013;140(17):3565–76.

    Article  CAS  PubMed  Google Scholar 

  54. Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol. 2004;24:8862–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhartiya D, Patel H. Ovarian stem cells-resolving controversies. J Assist Reprod Genet. 2018;35(3):393–8.

    Article  PubMed  Google Scholar 

  56. Martin JJ, Woods DC, Tilly JL. Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells. 2019;8(2):93. https://doi.org/10.3390/cells8020093.

    Article  CAS  PubMed Central  Google Scholar 

  57. Wang N, Satirapod C, Ohguchi Y, Park E-S, Woods DC, Tilly JL. Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Sci Rep. 2017;7:10011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Virant-Klun I. Functional testing of primitive oocyte-like cells developed in ovarian surface epithelium cell culture from small VSEL-like stem cells: can they be fertilized one day? Stem Cell Rev Rev. 2018;14(5):715–21.

    Article  CAS  Google Scholar 

  59. Suster NK, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells. 2019;11(7):383–97.

    Article  Google Scholar 

  60. Virant-Klun I, Stimpfel M. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep. 2016;6.

Download references

Acknowledgments

Sincere thanks to ICMR and ICMR-NIRRH for their trust in our research efforts focused on VSELs and for providing financial support.

Funding

Core support by Indian Council of Medical Research, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

DB wrote this article with help of AK. Both read and approved the final version.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable

Ethics Approval

The study was approved by NIRRH Institute Animal Ethics Committee.

Consent to Participate

Not applicable

Consent for Publication

NIRRH approved publication of this article (OTH/932/07-2020).

Additional information

Salient Highlights

• Adult mammalian testes harbors pluripotent, relatively quiescent VSELs along with tissue specific “progenitors,” the SSCs similar to VSELs and OSCs in the ovaries

• VSELs/SSCs express receptors for FSH and estrogens and thus both FSH and estrogens act directly on the stem cells. Results call for a paradigm shift in our current understanding of FSH action, which is not limited to only the Sertoli cells. Presence of ER α and β make these stem cells directly vulnerable to endocrine disrupting chemicals.

• Exposure to E2 or DES during neonatal life affects epigenetic status of the stem cells that supports their excessive self-renewal but blocks their differentiation (spermatogenesis). The niche (Sertoli cells) for the stem cells is also affected.

• C-KIT negative, primitive stem/progenitor cells fail to convert into c-KIT positive spermatogonia due to disruption of NP95 expression. As a result, meiosis and further spermiogenesis is blocked and results in reduced sperm count and infertility.

• Testicular cancer-like changes are initiated with an increase in OCT-4A positive VSELs after neonatal exposure to DES. Thus, it is the endogenous VSELs that initiate testicular cancers rather than the concept of presence of a pre-CIS.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhartiya, D., Kaushik, A. Testicular Stem Cell Dysfunction Due to Environmental Insults Could Be Responsible for Deteriorating Reproductive Health of Men. Reprod. Sci. 28, 649–658 (2021). https://doi.org/10.1007/s43032-020-00411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00411-3

Keywords

Navigation