Skip to main content
Log in

Functional Testing of Primitive Oocyte-like Cells Developed in Ovarian Surface Epithelium Cell Culture from Small VSEL-like Stem Cells: Can They Be Fertilized One Day?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Data from the literature show that there are different populations of stem cells present in human adult ovaries, including small stem cells resembling very small embryonic-like stem cells (VSELs). These small ovarian stem cells with diameters of up to 5 μm are present in the ovarian surface epithelium and can grow into bigger, primitive oocyte-like cells that express several markers of a germinal lineage and exhibit pluripotency but not the zona pellucida structure when cultured in vitro. In this report, we present the results of the functional testing of such primitive oocyte-like cells from one patient with premature ovarian failure after insemination with her partners’ sperm. Knowing that even immature oocytes collected in an in vitro fertilization program cannot be fertilized naturally, we were only interested in determining whether and how these cells react to added sperm and whether spermatozoa somehow “recognize” them. Interestingly, the primitive oocyte-like cells quickly released a zona pellucida-like structure in the presence of sperm. Two different populations of cells were distinguished, those with a thick and those with a thin zona pellucida-like structure. The primitive oocyte-like cells with a released zona pellucida-like structure expressed the pluripotency-related gene OCT4A (POU5F1) and zona pellucida-related gene ZP3, similar to oocytes obtained from in vitro fertilization but not somatic chondrocytes. In a small proportion of these cells, a single-spermatozoon was observed inside the cytoplasm, but no signs of fertilization were found. These observations may suggest a primitive “cortical reaction”. Our data further confirm the presence of germinal stem cells in the ovarian surface epithelium cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White, Y. A., Woods, D. C., Takai, Y., Ishihara, O., Seki, H., & Tilly, J. L. (2012). Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine, 18(3), 413–421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Woods, D. C., & Tilly, J. L. (2013). Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols, 8(5), 966–988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kossowska-Tomaszczuk, K., De Geyter, C., De Geyter, M., Martin, I., Holzgreve, W., Scherberich, A., et al. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells, 27(1), 210–219.

    Article  PubMed  CAS  Google Scholar 

  4. Stimpfel, M., Cerkovnik, P., Novakovic, S., Maver, A., & Virant-Klun, I. (2014). Putative mesenchymal stem cells isolated from adult human ovaries. Journal of Assisted Reproduction and Genetics, 31(8), 959–974.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dzafic, E., Stimpfel, M., Novakovic, S., Cerkovnik, P., & Virant-Klun, I. (2014). Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. BioMed Research International, 2014, 508216.

  6. Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., et al. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76(8), 843–856.

    Article  PubMed  CAS  Google Scholar 

  7. Virant-Klun, I., Rozman, P., Cvjeticanin, B., Vrtacnik-Bokal, E., Novakovic, S., Rülicke, T., et al. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells and Development, 18(1), 137–149.

    Article  PubMed  CAS  Google Scholar 

  8. Virant-Klun, I., Stimpfel, M., Cvjeticanin, B., Vrtacnik-Bokal, E., & Skutella, T. (2013). Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? Journal of Ovarian Research, 6, 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Virant-Klun, I., & Stimpfel, M. (2016). Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Scientific Reports, 6, 34730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.

    Article  PubMed  CAS  Google Scholar 

  11. Abdel-Latif, A., Zuba-Surma, E. K., Ziada, K. M., Kucia, M., Cohen, D. A., Kaplan, A. M., et al. (2010). Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Experimental Hematology, 38(12), 1131–1142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia, 21(2), 297–303.

    Article  PubMed  CAS  Google Scholar 

  13. Virant-Klun, I., Skutella, T., Hren, M., Gruden, K., Cvjeticanin, B., Vogler, A., et al. (2013). Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. BioMed Research International, 2013(690415).

  14. Virant-Klun, I., Skutella, T., Kubista, M., Vogler, A., Sinkovec, J., & Meden-Vrtovec, H. (2013). Expression of pluripotency and oocyte-related genes in single putative stem cells from human adult ovarian surface epithelium cultured in vitro in the presence of follicular fluid. BioMed Research International, 2013, 861460.

  15. Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., et al. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development, 20(8), 1451–1464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bui, H. T., Van Thuan, N., Kwon, D. N., Choi, Y. J., Kang, M. H., Han, J. W., et al. (2014). Identification and characterization of putative stem cells in the adult pig ovary. Development, 141(11), 2235–2244.

    Article  PubMed  CAS  Google Scholar 

  17. Patel, H., Bhartiya, D., & Parte, S. (2018). Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. Journal of Ovarian Research, 11(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Silvestris, E., Cafforio, P., D'Oronzo, S., Felici, C., Silvestris, F., & Loverro, G. (2018 Jan). In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Human Reproduction, (3). https://doi.org/10.1093/humrep/dex377.

  19. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.

    Article  PubMed  CAS  Google Scholar 

  20. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka, T. S., Kunath, T., Kimber, W. L., Jaradat, S. A., Stagg, C. A., Usuda, M., et al. (2002). Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Research, 12(12), 1921–1928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., & Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22(1), 51–64.

    Article  PubMed  CAS  Google Scholar 

  23. Looijenga, L. H., Stoop, H., de Leeuw, H. P., de Gouveia Brazao, C. A., Gillis, A. J., van Roozendaal, K. E., et al. (2003). POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Research, 63(9), 2244–2250.

    PubMed  CAS  Google Scholar 

  24. Jones, T. D., Ulbright, T. M., Eble, J. N., Baldridge, L. A., & Cheng, L. (2004). OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. American Journal of Surgical Pathology, 28(7), 935–940.

    Article  PubMed  Google Scholar 

  25. Schöler, H. R., Ruppert, S., Suzuki, N., Chowdhury, K., & Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature, 344(6265), 435–439.

    Article  PubMed  Google Scholar 

  26. Pesce, M., Wang, X., Wolgemuth, D. J., & Schöler, H. (1998). Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development, 71(1–2), 89–98.

    Article  PubMed  CAS  Google Scholar 

  27. Goto, T., Adjaye, J., Rodeck, C. H., & Monk, M. (1999). Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. Molecular Human Reproduction, 5(9), 851–860.

    Article  PubMed  CAS  Google Scholar 

  28. Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., et al. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094.

    Article  PubMed  Google Scholar 

  29. Sovalat, H., Scrofani, M., Eidenschenk, A., & Hénon, P. (2016). Human Very Small Embryonic-Like Stem Cells Are Present in Normal Peripheral Blood of Young, Middle-Aged, and Aged Subjects. Stem Cells International, 2016, 7651645.

  30. Monti, M., Imberti, B., Bianchi, N., Pezzotta, A., Morigi, M., Del Fante, C., et al. (2017). A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells and Development, 26(17), 1258–1269.

    Article  PubMed  CAS  Google Scholar 

  31. Hübner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., et al. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300(5623), 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, X., Chen, S., Yu, X., Zheng, P., & Wang, H. (2012). BMP15 gene is activated during human amniotic fluid stem cell differentiation into oocyte-like cells. DNA and Cell Biolgy, 31(7), 1198–1204.

    Article  CAS  Google Scholar 

  33. Yu, X., Wang, N., Qiang, R., Wan, Q., Qin, M., Chen, S., et al. (2014). Human amniotic fluid stem cells possess the potential to differentiate into primordial follicle oocytes in vitro. Biology of Reproduction, 90(4), 73.

    Article  PubMed  CAS  Google Scholar 

  34. Danner, S., Kajahn, J., Geismann, C., Klink, E., & Kruse, C. (2007). Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Molecular Human Reproduction, 13(1), 11–20.

    Article  PubMed  CAS  Google Scholar 

  35. Dyce, P. W., Shen, W., Huynh, E., Shao, H., Villagómez, D. A., Kidder, G. M., et al. (2011). Analysis of oocyte-like cells differentiated from porcine fetal skin-derived stem cells. Stem Cells and Development, 20(5), 809–819.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, Y. M., Kim, T. H., Lee, J. H., Lee, W. J., Jeon, R. H., Jang, S. J., et al. (2016). Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. Journal of Ovarian Research, 9, 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gupta, S. K., Bansal, P., Ganguly, A., Bhandari, B., & Chakrabarti, K. (2009). Human zona pellucida glycoproteins: functional relevance during fertilization. Journal of Reproductive Immunology, 83(1–2), 50–55.

    Article  PubMed  CAS  Google Scholar 

  38. José, O., Hernández-Hernández, O., Chirinos, M., González-González, M. E., Larrea, F., Almanza, A., et al. (2010). Recombinant human ZP3-induced sperm acrosome reaction: evidence for the involvement of T- and L-type voltage-gated calcium channels. Biochemical and Biophysical Research Communications, 395(4), 530–534.

    Article  PubMed  CAS  Google Scholar 

  39. Canosa, S., Adriaenssens, T., Coucke, W., Dalmasso, P., Revelli, A., Benedetto, C., et al. (2017). Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Molecular Human Reproduction, 23(5), 292–303.

    Article  PubMed  CAS  Google Scholar 

  40. Sun, Q. Y. (2003). Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microscopy Research and Technique, 61(4), 342–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the patient who kindly donated her ovarian tissue for this research; Dr. Andrej Vogler, Department of Obstetrics and Gynecology, University Medical Center Ljubljana, who kindly performed the laparoscopic brushing of the ovarian surface epithelium and biopsy of cortical tissue for diagnosis; and Dr. Matjaz Hren, who serviced the genetic analysis at the National Institute of Biology and BioSistemika.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Virant-Klun.

Ethics declarations

Conflict of interest

The author declares no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virant-Klun, I. Functional Testing of Primitive Oocyte-like Cells Developed in Ovarian Surface Epithelium Cell Culture from Small VSEL-like Stem Cells: Can They Be Fertilized One Day?. Stem Cell Rev and Rep 14, 715–721 (2018). https://doi.org/10.1007/s12015-018-9832-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9832-y

Keywords

Navigation