Skip to main content
Log in

Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes – An Alternate Premise to Explain Testicular Germ Cell Tumors

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Developmental exposure to endocrine disruptors has resulted in the increased incidence of infertility and testicular germ cell tumors (T2GCT) in young men residing in developed countries. Unlike T1GCT (infants and young children) and T3GCT (aged men), T2GCT arise from CIS/GCNIS that develops from pre-CIS. Pre-CIS represents undifferentiated, growth-arrested gonocytes that persist in fetal testes due to endocrine disruption. However, whether pre-CIS truly exist, do CIS develop into T2GCT, why no CIS in T1GCT/T3GCT, why germ cell tumors (GCT) also occur along midline at extra-gonadal sites, why T1GCT show partial erasure and T2GCT show complete erasure of genomic imprints are open questions that are awaiting answers. We propose that rather than pre-CIS, pluripotent, very small embryonic-like stem cells (VSELs) get affected by exposure to endocrine disruption. Since VSELs are developmentally equivalent to primordial germ cells (PGCs), T2GCT cells show complete erasure of genomic imprints and CIS represents growth-arrested clonally expanding stem/progenitor cells. PGCs/VSELs migrate along the midline to various organs and this explains why GCT occur along the midline, T1GCT show partial erasure of imprints as they develop from migrating PGCs. T3GCT possibly reflects effects of aging due to compromised differentiation and expansion of pre-meiotic spermatocytes. Absent spermatogenesis in pre-pubertal and aged testes explains absence of CIS in T1GCT and T3GCT. Endocrine disruptors possibly alter epigenetic state of VSELs and thus rather than maintaining normal tissue homeostasis, VSELs undergo increased proliferation and compromised differentiation resulting in reduced sperm count, infertility and TGCT. This newly emerging understanding offers alternate premise to explain TGCT and warrants further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

VSELs:

Very small embryonic-like stem cells

SSCs:

Spermatogonial stem cells

PGCs:

Primordial germ cells

TGCT:

Testicular germ cell tumors

CIS:

Carcinoma in situ

GCNIS:

Germ cell neoplasia in situ

OCT-4A:

Transcription factor reflecting pluripotent state

FSH:

Follicle stimulating hormone

References

  1. Skakkebaek, N. E., Rajpert-De Meyts, E., & Main, K. M. (2001). Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects. Human Reproduction, 16(5), 972–978.

    Article  CAS  Google Scholar 

  2. Xing, J. S., & Bai, Z. M. (2018). Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sciences, 194, 120–129.

    Article  CAS  Google Scholar 

  3. Ostrowski, K. A., & Walsh, T. J. (2015). Infertility with testicular Cancer. The Urologic Clinics of North America, 42(3), 409–420.

    Article  Google Scholar 

  4. Jacobsen, R., Bostofte, E., Engholm, G., Hansen, J., Olsen, J. H., Skakkebaek, N. E., & Moller, H. (2000). Risk of testicular cancer in men with abnormal semen characteristics: cohort study. BMJ, 321(7264), 789–792.

    Article  CAS  Google Scholar 

  5. Walsh, T. J., Croughan, M. S., Schembri, M., Chan, J. M., & Turek, P. J. (2009). Increased risk of testicular germ cell cancer among infertile men. Archives of Internal Medicine, 169(4), 351–356.

    Article  Google Scholar 

  6. Rajpert-De Meyts E, Skakkebaek NE, Toppari J. (2018) Testicular cancer pathogenesis, diagnosis and endocrine aspects. In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; Editors. De Groot LJ, et al. https://www.ncbi.nlm.nih.gov/pubmed/25905224.

  7. Spiller, C. M., & Bowles, J. (2017). Germ cell neoplasia in situ: The precursor cell for invasive germ cell tumors of the testis. The International Journal of Biochemistry & Cell Biology, 86, 22–25.

    Article  CAS  Google Scholar 

  8. Elzinga-Tinke, J. E., Dohle, G. R., & Looijenga, L. H. (2015). Etiology and early pathogenesis of malignant testicular germ cell tumors: Towards possibilities for preinvasive diagnosis. Asian Journal of Andrology, 17(3), 381–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanna, N. H., & Einhorn, L. H. (2014). Testicular cancer--discoveries and updates. The New England Journal of Medicine, 371(21), 2005–2016.

    Article  Google Scholar 

  10. Ghazarian, A. A., Kelly, S. P., Altekruse, S. F., Rosenberg, P. S., & McGlynn, K. A. (2017). Future of testicular germ cell tumor incidence in the United States: Forecast through 2026. Cancer, 123(12), 2320–2328.

    Article  CAS  Google Scholar 

  11. Le Cornet, C., Lortet-Tieulent, J., Forman, D., Béranger, R., Flechon, A., Fervers, B., et al. (2014). Testicularcancer incidence to rise by 25%by 2025 in Europe? Model based predictions in 40 countries using population-based registry data. European Journal of Cancer, 50(4), 831–839.

    Article  Google Scholar 

  12. Shanmugalingam, T., Soultati, A., Chowdhury, S., Rudman, S., & Van Hemelrijck, M. (2013). Global incidence and outcome of testicular cancer. Clin Epidemiol., 5, 417–427.

    PubMed  PubMed Central  Google Scholar 

  13. Kristensen, D. G., Skakkebæk, N. E., Rajpert-De Meyts, E., & Almstrup, K. (2013). Epigenetic features of testicular germ cell tumors in relation to epigenetic characteristics of foetal germ cells. The International Journal of Developmental Biology, 57(2–4), 309–317.

    Article  CAS  Google Scholar 

  14. Looijenga, L. H., Verkerk, A. J., Dekker, M. C., van Gurp, R. J., Gillis, A. J., & Oosterhuis, J. W. (1998). Genomic imprinting in testicular germ cell tumours. APMIS, 106(1), 187–195.

    Article  CAS  Google Scholar 

  15. Lim, J., Goriely, A., Turner, G. D., Ewen, K. A., Jacobsen, G. K., Graem, N., Wilkie, A. O., & Rajpert-De Meyts, E. (2011). OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. The Journal of Pathology, 224(4), 473–483.

    Article  CAS  Google Scholar 

  16. Yang, Q. E., & Oatley, J. M. (2014). Spermatogonial stem cell functions in physiological and pathological conditions. Current Topics in Developmental Biology, 107, 235–267.

    Article  CAS  Google Scholar 

  17. Rajpert-De Meyts, E. (2006). Developmental model for the pathogenesis of testicular carcinoma in situ: Genetic and environmental aspects. Human Reproduction Update, 12(3), 303–323.

    Article  CAS  Google Scholar 

  18. Oosterhuis, J. W., Stoop, H., Dohle, G., Boellaard, W., van Casteren, N., Wolffenbuttel, K., & Looijenga, L. H. (2011). A pathologist's view on the testis biopsy. International Journal of Andrology, 34, e14–e20. https://doi.org/10.1111/j.1365-2605.2011.01204.x.

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen, A., Johansen, M. L., Juul, A., Skakkebaek, N. E., Main, K. M., & Rajpert-De Meyts, E. (2015). Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Seminars in Cell & Developmental Biology, 45, 124–137.

    Article  Google Scholar 

  20. de Jong, B., Oosterhuis, J. W., Castedo, S. M., Vos, A., & te Meerman, G. J. (1990). Pathogenesis of adult testicular germ cell tumors. A cytogenetic model. Cancer Genetics and Cytogenetics, 48(2), 143–167.

    Article  Google Scholar 

  21. Rajpert-De Meyts, E., & Skakkebaek, N. E. (2011). Pathogenesis of testicular carcinoma in situ and germ cell cancer: Still more questions than answers. International Journal of Andrology, 34(4), e2–e6.

    Article  Google Scholar 

  22. Skakkebaek, N. E. (1972). Possible carcinoma-in-situ of the testis. Lancet, 2(7776), 516–517.

    Article  CAS  Google Scholar 

  23. Berney, D. M., Looijenga, L. H., Idrees, M., Oosterhuis, J. W., Rajpert-De Meyts, E., Ulbright, T. M., & Skakkebaek, N. E. (2016). Germ cell neoplasia in situ (GCNIS): evolution of the current nomenclature for testicular pre-invasive germ cell malignancy. Histopathology, 69(1), 7–10.

    Article  Google Scholar 

  24. Burns, W. R., Sabanegh, E., Dada, R., Rein, B., & Agarwal, A. (2010). Is male infertility a forerunner to cancer? Intl Braz J Urol, 36, 527–536.

    Article  Google Scholar 

  25. Litchfield, K., Loveday, C., Levy, M., Dudakia, D., Rapley, E., Nsengimana, J., Bishop, D. T., Reid, A., Huddart, R., Broderick, P., Houlston, R. S., & Turnbull, C. (2018). Large-scale sequencing of testicular germ cell tumour (TGCT) cases excludes major TGCT predisposition gene. European Urology, 73(6), 828–831.

    Article  CAS  Google Scholar 

  26. Rajpert-De Meyts, E., & Skotheim, R. I. (2018). Complex polygenic nature of testicular germ cell cancer suggests multifactorial aetiology. European Urology, 73(6), 832–833.

    Article  Google Scholar 

  27. Nielsen, J. E., Kristensen, D. M., Almstrup, K., Jørgensen, A., Olesen, I. A., Jacobsen, G. K., Horn, T., Skakkebaek, N. E., Leffers, H., & Rajpert-de Meyts, E. (2012). A novel double staining strategy for improved detection of testicular carcinoma in situ cells in human semen samples. Andrologia, 44(2), 78–85.

    Article  CAS  Google Scholar 

  28. Akyüz, M., Topaktaş, R., Ürkmez, A., Koca, O., & Öztürk, M. İ. (2018). Evaluation of germ-cell neoplasia in situ entity in testicular tumors. Turk J Urol., 16, 1–5.

    Google Scholar 

  29. Basiri, A., Movahhed, S., Parvin, M., Salimi, M., & Rezaeetalab, G. H. (2016). The histologic features of intratubular germ cell neoplasia and its correlation with tumor behavior. Investig Clin Urol, 53(3), 195–205.

    Google Scholar 

  30. Kucia, M., Reca, R., Campbell, F. R., Zuba-SurmaE, M. M., Ratajczak, J., & Ratajczak, M. Z. (2006). A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    Article  CAS  Google Scholar 

  31. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard Jr., J. W., Ratajczak, J., & Ratajczak, M. Z. (2008). Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry. Part A, 73A, 1116–1127.

    Article  CAS  Google Scholar 

  32. Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., Czajka, R., Wojakowski, W., Machalinski, B., & Ratajczak, M. Z. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: Preliminary report. Leukemia, 21(2), 297–303.

    Article  CAS  Google Scholar 

  33. Bhartiya, D., Shaikh, A., Nagvenkar, P., Kasiviswanathan, S., Pethe, P., Pawani, H., Mohanty, S., Rao, S. G., Zaveri, K., & Hinduja, I. (2012). Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells and Development, 21(1), 1–6.

    Article  CAS  Google Scholar 

  34. Abbott, A. (2013). Doubt cast over tiny stem cells. Nature, 499, 390.

    Article  CAS  Google Scholar 

  35. Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: Struggling to be acknowledged over two decades. Stem Cell Reviews, 13(6), 713–724.

    Article  CAS  Google Scholar 

  36. Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells: Purification from adult organs, characterization, and biological significance. Stem Cell Reviews, 4(2), 89–99.

    Article  Google Scholar 

  37. Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynski, M., Wan, W., Ratajczak, J., Wojakowski, W., & Kucia, M. (2008). Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. Journal of Autoimmunity, 30(3), 151–162.

    Article  Google Scholar 

  38. Virant-Klun, I. (2016). Very small embryonic-like stem cells: A potential developmental link between germinal lineage and hematopoiesis in humans. Stem Cells and Development, 25(2), 101–113.

    Article  CAS  Google Scholar 

  39. Scaldaferri, M. L., Klinger, F. G., Farini, D., Di Carlo, A., Carsetti, R., Giorda, E., & De Felici, M. (2015). Hematopoietic activity in putative mouse primordial germ cell population. Mechanisms of Development, 136, 53–63.

    Article  CAS  Google Scholar 

  40. Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Hénon, P. (2018). VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Reviews, 14, 510–524. https://doi.org/10.1007/s12015-018-9821-1.

    Article  CAS  PubMed Central  Google Scholar 

  41. Ratajczak, M. Z. (2017). Why are hematopoietic stem cells so 'sexy'? On a search for developmentalexplanation. Leukemia, 31(8), 1671–1677.

    Article  CAS  Google Scholar 

  42. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., Parte, S., & Unni, S. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.

    Article  Google Scholar 

  43. Ratajczak, M. Z., Marycz, K., Poniewierska-Baran, A., Fiedorowicz, K., Zbucka-Kretowska, M., & Moniuszko, M. (2014). Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Advances in Medical Sciences, 59(2), 273–280.

    Article  Google Scholar 

  44. Shin, D. M., Liu, R., Klich, I., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2010). Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Molecules and Cells, 29(6), 533–538.

    Article  CAS  Google Scholar 

  45. Kim, Y., Jeong, J., Kang, H., Lim, J., Heo, J., Ratajczak, J., Ratajczak, M. Z., & Shin, D. M. (2014). The molecular nature of very small embryonic-like stem cells in adult tissues. Int J Stem Cells, 7(2), 55–62.

    Article  CAS  Google Scholar 

  46. Bhartiya, D., Kasiviswanathan, S., Unni, S. K., Pethe, P., Dhabalia, J. V., Patwardhan, S., & Tongaonkar, H. B. (2010). Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. The Journal of Histochemistry and Cytochemistry, 58(12), 1093–1010.

    Article  CAS  Google Scholar 

  47. Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S., Kato, T., Kazuki, Y., Toyokuni, S., Toyoshima, M., Niwa, O., Oshimura, M., Heike, T., Nakahata, T., Ishino, F., Ogura, A., & Shinohara, T. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7), 1001–1012.

    Article  CAS  Google Scholar 

  48. Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., Nolte, J., Wolf, F., Li, M., Engel, W., & Hasenfuss, G. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088), 1199–1203.

    Article  CAS  Google Scholar 

  49. Bhartiya, D., Kasiviswananthan, S., & Shaikh, A. (2012). Cellular origin of testis-derived pluripotent stem cells: A case for very small embryonic-like stem cells. Stem Cells and Development, 21(5), 670–674.

    Article  CAS  Google Scholar 

  50. Anand, S., Bhartiya, D., Sriraman, K., Patel, H., & Manjramkar, D. D. (2014). Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther., 12, 628–697. https://doi.org/10.1007/s12015-016-9685-1.

    Article  CAS  Google Scholar 

  51. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews, 12(6), 682–697.

    Article  CAS  Google Scholar 

  52. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.

    Article  CAS  Google Scholar 

  53. Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology, 13, 122. https://doi.org/10.1186/s12958-015-0121-1.

    Article  CAS  PubMed  Google Scholar 

  54. Stimpfel, M., Skutella, T., Kubista, M., Malicev, E., Conrad, S., & Virant-Klun, I. (2012). Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. Journal of Biomedicine & Biotechnology, 2012, 1–15. https://doi.org/10.1155/2012/291038.

    Article  Google Scholar 

  55. Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., Malicev, E., & Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76, 843–856.

    Article  CAS  Google Scholar 

  56. Bruggeman, J. W., Koster, J., Lodder, P., Repping, S., & Hamer, G. (2018). Massive expression of germ cell-specific genes is a hallmark of cancer and a potential target for novel treatment development. Oncogene. https://doi.org/10.1038/s41388-018-0357-2.

    Article  CAS  Google Scholar 

  57. Ratajczak, M. Z., Shin, D. M., Liu, R., Marlicz, W., Tarnowski, M., Ratajczak, J., & Kucia, M. (2010). Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Reviews, 6(2), 307–316.

    Article  Google Scholar 

  58. Bhartiya, D., & Ganguly, R. (2016). Do somatic cells de-differentiate/trans-differentiate or vsels initiate cancer and explain plasticity in adult tissues? J Cancer Stem Cell Research, 4, e1006. https://doi.org/10.14343/JCSCR.2016.4e1006.

    Article  Google Scholar 

  59. Bhartiya, D. (2017). Do adult somatic cells undergo reprogramming or endogenous pluripotent stem cells get activated to account for plasticity, regeneration and cancer initiation? Stem Cell Reviews, 13(5), 699–701.

    Article  Google Scholar 

  60. De Felici, M. (2016). The formation and migration of primordial germ cells in mouse and man. Results and Problems in Cell Differentiation, 58, 23–46.

    Article  Google Scholar 

  61. Cantú, A. V., & Laird, D. J. (2017). A pilgrim’s progress: Seeking meaning in primordial germ cell migration. Stem Cell Research, 24, 181–187.

    Article  Google Scholar 

  62. Ferlin, A., Pengo, M., Selice, R., Salmaso, L., Garolla, A., & Foresta, C. (2008). Analysis of single nucleotide polymorphismsof FSH receptor genesuggests association with testicular cancer susceptibility. Endocrine-Related Cancer, 5(2), 429–437.

    Article  Google Scholar 

  63. Bang, A. K., Busch, A. S., Almstrup, K., Gromoll, J., Kliesch, S., Rajpert-De Meyts, E., Skakkebaek, N. E., Juul, A., Tüttelmann, F., & Jørgensen, N. (2018). Is the FSHR 2039A>G variant associated with susceptibility to testicular germ cell cancer? Andrology., 6(1), 176–183.

    Article  CAS  Google Scholar 

  64. Tüttelmann, F., Laan, M., Grigorova, M., Punab, M., Sõber, S., & Gromoll, J. (2012). Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters. The Journal of Clinical Endocrinology and Metabolism, 97(10), 3639–3647.

    Article  Google Scholar 

  65. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., & Singh, P. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development. https://doi.org/10.1089/scd.2018.0118.

Download references

Acknowledgements

Authors thank ICMR for providing financial support. AK also thanks CSIR/UGC for her fellowship during her PhD program. NIRRH manuscript number is REV/655/07-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Bhartiya, D. Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes – An Alternate Premise to Explain Testicular Germ Cell Tumors. Stem Cell Rev and Rep 14, 793–800 (2018). https://doi.org/10.1007/s12015-018-9848-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9848-3

Keywords

Navigation