Skip to main content
Log in

Male sterility systems and their applications in hybrid wheat breeding

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

To ensure food security for ~ 10 billion human population in 2050 a sustainable increase in food production is indispensable. Wheat is the third most consumed cereal crop worldwide after rice and maize. It is estimated that the current wheat yield will be insufficient to cope with future needs. In the past hybrid seed production has revolutionized rice and maize production; however, wheat is still lagging behind other crops, such as rice, corn, soybeans, and canola in terms of variety/hybrid development and trait development. The potential of hybrid wheat is undeniable but these challenges need to be overcome if we want to commercialize it. Despite a century of efforts we still do not have a reliable hybrid breeding system to attempt large-scale production due to certain issues like self-pollination, polyploid nature, low variability in germplasm (less than 1% cross-pollination), and higher seed rates. Moreover, a limited number of GMS genes and their regulatory pathways has narrowed our selection; further research is required to identify and understand the genetic and molecular mechanisms involved. There are few successful examples of hybrid wheat, only 1% of its total wheat growing area is hybrid wheat. There is no simple way to produce a stable wheat hybrid, until this point no one knows how to commercialize wheat on a larger scale. The use of comparative functional genomics and biotechnological tools combined with conventional breeding is likely the possible key to guarantee a stable hybrid wheat breeding and to help overcome global food security issues. This paper would provide an overview of techniques to induce male sterility in wheat and their use in commercialized hybrid seed production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas A, Ping Yu, Sun L, Yang Z, Chen D, Cheng S, Cao L (2021) Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci 12:629314

    Article  PubMed  PubMed Central  Google Scholar 

  • Adugna A, Adugna A, Nanda GS, Nanda GS, Bains NS, Bains NS (2006) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid performance in wheat (Triticum aestivum L.). Acta Agron Hung 54:109–120

    Article  Google Scholar 

  • Adugna A, Nanda GS, Singh K, Bains NS (2004) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135:297–304

    Article  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Uauy C, Wulff BBH, Zhou Ji, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bing-Hua L, Jing-Yang D (1986) A dominant gene for male sterility in wheat. Plant Breed 97:204–209

    Article  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Block MD, Debrouwer D, Moens T (1997) ’The development of a nuclear male sterility system in wheat expression of the Barnase Gene under the Control of Tapetum Specific Promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Chaloner WG, Ferguson IK, Muller J (1976) Evolutionary significance of the exine. Academic Press, London

    Google Scholar 

  • Chang Z, Chen Z, Wang Na, Xie G, Jiawei Lu, Yan W, Zhou J, Tang X, Deng XW (2016) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci 113:14145–14150

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi LS (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J (2017) Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci 36:55–69

    Article  CAS  Google Scholar 

  • Cigan AM, Singh M, Benn G, Feigenbutz L, Kumar M, Cho M-J, Svitashev S, Young J (2017) Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol J 15:379–389

    Article  CAS  PubMed  Google Scholar 

  • Consortium, International Wheat Genome Sequencing, Mayer KFX, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345: 1251788

  • Darvey N, Zhang P, Trethowan R, Dong CM, Lage J, Bird N, Tapsell C, Hummel A (2020) Improved blue aleurone and other segregation systems. In: Google Patents

  • Deng JY, Gao ZL (1980) The use of a dominant male-sterile gene in wheat breeding. Acta Agron Sin 6:85–98

    Google Scholar 

  • Diptibala R, Debarchana J, Vineeta S, Manish K, Pandurang A, Prakash S, Jawahar Lal K, Sanghamitra S, Ramlakhan V (2020) Hybrid rice research: current status and prospects. In: Mahmood-ur-Rahman A (ed) Recent advances in rice research (IntechOpen: Rijeka)

  • Driscoll CJ (1972) XYZ system of producing hybrid wheat 1. Crop Sci 12:516–517

    Article  Google Scholar 

  • Driscoll CJ (1985) Modified XYZ system of producing hybrid wheat 1. Crop Sci 25:1115–1116

    Article  Google Scholar 

  • Eckardt NA (2006) Cytoplasmic male sterility and fertility restoration. In: American Society of Plant Biologists

  • Fenggao JI, Jingyang D (1985) Further study on the inheritance of the genic male-sterile wheat of Taigu and the production of the dominant male-sterile octoploid triticale. Scientia Sinica, B 28(6):608–617. https://eurekamag.com/research/001/373/001373213.php

  • Fenggao JI, Jingyang D (1986) Utilization of the dominant male-sterile gene Ta1 in Triticale breeding program II: production and utilization of dominant male-sterile octoploid Triticale. Hereditas, China 8(5):15–18. https://eurekamag.com/research/001/727/001727268.php

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  ADS  CAS  PubMed  Google Scholar 

  • Godfray HJC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gowda M, Friedrich C, Longin H, Lein V, Reif JC (2012) Relevance of specific versus general combining ability in winter wheat. Crop Sci 52:2494–2500

    Article  Google Scholar 

  • Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:1–11

    Article  Google Scholar 

  • Guttieri MJ (2020) Ms3 dominant genetic male sterility for wheat improvement with molecular breeding. Crop Sci 60:1362–1372

    Article  CAS  Google Scholar 

  • Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Physiol 160:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli S, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Wang K, Huang W, Gai Liu YA, Gao JW, Huang Qi, Ji Y, Qin X, Wan L (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong–Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji F, Deng J, Li S, Cheng C (1989) A primary report on breeding of dominant male-sterile hexaploid Triticale. Hereditas 11:1–4

    Google Scholar 

  • Jingyang D, Zhongli G (1982) Discovery and determination of a dominant male-sterile gene and its importance in genetics and wheat breeding. Sci Sin B-Chem B a M 25:508–520

  • Kaul MLH (1988) Male sterility in higher plants. Springler, New York

    Book  Google Scholar 

  • Keeling AG, Milner MJ (2021) Methods and compositions relating to maintainer lines. In: Google Patents

  • Kidd G, Dvorak J (1995) A persistent Monsanto tames hybrid wheat. Bio/technology 13:15–18

    CAS  Google Scholar 

  • Kihara H (1951) Substitution of nucleus and its effects on genome manifestations. Cytologia 16:177–193

    Article  Google Scholar 

  • Li Li, Li Y, Song S, Deng H, Li Na, Xiqin Fu, Chen G, Yuan L (2015) An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241:157–166

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Z, He G, Ma L, Deng XW (2020) CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genom 47:263–272

    Article  CAS  Google Scholar 

  • Li YF, Zhao CP, Zhang FENGTING, Sun H, Sun DF (2006) Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica 151:207–213

    Article  Google Scholar 

  • Li LuoJiang, ZhenGang Ru, Gao QingRong, Jiang H, Guo FengZhi, ShiWen Wu, Sun Z (2009) Male sterility and thermo-photosensitivity characteristics of BNS in wheat. Sci Agric Sin 42:3019–3027

    Google Scholar 

  • Liu Y-J, Gao S-Q, Tang Y-M, Gong J, Zhang X, Wang Y-b, Zhang L-P, Sun R-W, Zhang Q, Chen Z-b (2018) Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta 247:1307–1321

    Article  CAS  PubMed  Google Scholar 

  • Liu Yi, Zhang F, Luo X, Kong D, Zhang A, Wang F, Pan Z, Wang J, Bi J, Luo L, Liu G, Xinqiao Yu (2021) Molecular breeding of a novel PTGMS line of WDR for broad-spectrum resistance to blast using Pi9, Pi5, and Pi54 genes. Rice 14:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longin CFH (2016) Future of wheat breeding is driven by hybrid wheat and efficient strategies for pre-breeding on quantitative traits. J Bot Sci 3:32–33

    Google Scholar 

  • Loukides CA, Broadwater AH, Bedinger PA (1995) Two new male-sterile mutants of Zea mays (Poaceae) with abnormal tapetal cell morphology. Am J Bot 82:1017–1023

    Article  Google Scholar 

  • Lv J, Kun Yu, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R (2020) Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Maan SS, Carlson KM, Williams ND, Yang T (1987) Chromosomal arm location and gene-centromere distance of a dominant gene for male sterility in wheat 1. Crop Sci 27:494–500

    Article  Google Scholar 

  • Maan SS, Kianian SF (2001) Third dominant male sterility gene in common wheat. Wheat Inf Service 93:27–31

    Google Scholar 

  • Mark Cigan A, Unger-Wallace E, Haug-Collet K (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J 43:929–940

    Article  PubMed  Google Scholar 

  • McRae DH (1985) Advances in chemical hybridization. Plant Breed Rev 3:169–191

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Min L, Li Y, Qin Hu, Zhu L, Gao W, Yuanlong Wu, Ding Y, Liu S, Yang X, Zhang X (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai Y, Tsunewaki K (1979) Basic studies on hybrid wheat breeding. Theor Appl Genet 54:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ni F, Qi J, Hao Q, Lyu Bo, Luo M-C, Wang Y, Chen F, Wang S, Zhang C, Epstein L (2017) Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun 8:1–12

    Article  CAS  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallotta MA, Warner P, Kouidri A, Tucker EJ, Baes M, Suchecki R, Watson-Haigh N, Okada T, Garcia M, Sandhu A (2019) Wheat ms5 male-sterility is induced by recessive homoeologous A and D genome non-specific lipid transfer proteins. Plant J 99:673–685

    Article  CAS  PubMed  Google Scholar 

  • Parodi PC, de los Angeles Gaju M (2009) Male sterility induced by the chemical hybridizing agent clofencet on wheat, Triticum aestivum and T. turgidum var. durum. Ciencia e Investigación Agraria 36:267–276

    Article  Google Scholar 

  • Perez-Prat E, van LookerenCampagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7:199–203

    Article  CAS  PubMed  Google Scholar 

  • Pickett AA, Galwey NW (1997) A further evaluation of hybrid wheat. Plant Var Seeds 10:15–32

    Google Scholar 

  • Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Ru Z-G, Zhang L-P, Tie-Zhu Hu, Liu H-Y, Yang Q-K, Weng M-L, Wang B, Zhao C-P (2015) Genetic analysis and chromosome mapping of a thermo-sensitive genic male sterile gene in wheat. Euphytica 201:321–327

    Article  CAS  Google Scholar 

  • Schachschneider R (2018) 30 Years of hybrid wheat breeding in Europe: recent developments and future prospects. In: Tagungsband der 68. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 20–22 November 2017, Raumberg-Gumpenstein, pp 19–26

  • Schmidt K, Koch K, Molitor A, Verstegen H (2016) Male-sterile plant of the genus triticum. In: Google patents

  • Sedláček T, Horčička P (2019) Proposal of updated XYZ system for the production of hybrid wheat seed. Czech J Genet Plant Breed 55:35–38

    Article  Google Scholar 

  • Shi J, Cui M, Yang Li, Kim Y-J, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Albertsen MC, Mark Cigan A (2021) Male fertility genes in bread wheat (Triticum aestivum L.) and their utilization for hybrid seed production. Int J Mol Sci 22:8157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Mark Cigan A (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar M, Thilges K, Cho M-J, Mark Cigan A (2017) 'MS26/CYP704B is required for anther and pollen wall development in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. PLoS ONE 12:e0177632

    Article  PubMed  PubMed Central  Google Scholar 

  • Song S, Tian D, Zhang Z, Songnian Hu, Jun Yu (2018) Rice genomics: over the past two decades and into the future. Genomics Proteomics Bioinform 16:397–404

    Article  CAS  Google Scholar 

  • Sorrells ME, Fritz SE (1982) Application of a dominant male-sterile allele to the improvement of self-pollinated crops 1. Crop Sci 22:1033–1035

    Article  Google Scholar 

  • Sun H, Zhang FT, Wang YB, Ye ZJ, Qin ZJ, Bai XC, Yang JF, Gao JG, Zhao CP (2017) Fertility alteration in male sterile line BS210 of wheat. Acta Agron Sin 43:171–178

    Article  Google Scholar 

  • Tang Z, Liping Zhang DI, Yang CZ, Zheng Y (2011) Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. Plant Cell Environ 34:389–405

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Liu H, Zhou Y, Liu H, Du L, Wang K, Ye X (2021) Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnol J 19:224–226

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tsunewaki K, Wang G-Z, Matsuoka Y (1996) Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities. Genes Genet Syst 71:293–311

    Article  CAS  PubMed  Google Scholar 

  • Tucker EJ, Baumann U, Kouidri A, Suchecki R, Baes M, Garcia M, Okada T, Dong C, Yongzhong Wu, Sandhu A (2017) Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  • Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Wu B (2020) Molecular cloning of genic male-sterility genes and their applications for plant heterosis via biotechnology-based male-sterility systems. In: Boldura O-M, Balta C, Enany S (eds) Synthetic biology-new interdisciplinary science. Nagpal, ML, pp 75–102

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Hao Wu, Dihua Su, Chen Y, Guo J, Luo Da (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  PubMed  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Fox TW, Trimnell MR, Wang L, Rui-ji Xu, Mark Cigan A, Huffman GA, Garnaat CW, Hershey H, Albertsen MC (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B (2003) Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor Appl Genet 107:1500–1504

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Xia Xu, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X (2018) Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 9:1–10

    Article  ADS  Google Scholar 

  • Yang X, Geng X, Liu Z, Ye J, Mengfan Xu, Zhang L, Song X (2018) A sterility induction trait in the genic male sterility wheat line 4110S induced by high temperature and its cytological response. Crop Sci 58:1866–1876

    Article  CAS  Google Scholar 

  • Yang X, Ye J, Niu F, Feng Yi, Song X (2021) Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. Planta 253:1–15

    Article  Google Scholar 

  • Yuan S-H, Bai J-F, Guo H-y, Duan W-J, Liu Z-H, Zhang F-T, Ma J-X, Zhao C-P, Zhang L-P (2020) QTL mapping of male sterility-related traits in a photoperiod and temperature-sensitive genic male sterile wheat line BS366. Plant Breed 139:498–507

    Article  CAS  Google Scholar 

  • Zhang Y, Deng J, Ji F (1987) A study for stability of male sterility of Taigu genic male sterile wheat. Shanxi Agric Sci 6:5–8

    Google Scholar 

  • Zhang J, Feng L, He L, Guodong Y (2003) ’Thermo-sensitive period and critical temperature of fertility transition of thermo-photo-sensitive genic male sterile wheat. Ying Yong Sheng Tai Xue Bao 14:57–60

    CAS  PubMed  Google Scholar 

  • Zhang D, Suowei Wu, An X, Xie Ke, Dong Z, Zhou Y, Liwen Xu, Fang W, Liu S, Liu S (2018) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    Article  CAS  PubMed  Google Scholar 

  • Zhou D-X (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Wang S, Feng Y, Liu Z, Wang G (2006) The 4E-ms system of producing hybrid wheat. Crop Sci 46:250–255

    Article  Google Scholar 

  • Zhou S, Zhang H, Li R, Hong Q, Li Y, Xia Q, Zhang W (2017) Function identification of the nucleotides in key cis-element of Dysfunctional Tapetum1 (DYT1) promoter. Front Plant Sci 8:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge University of Agriculture Faisalabad and Higher Education Commission of Pakistan for supporting this research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizwana Maqbool or Muhammad Sajjad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Janusz Zimny.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, A., Khan, U.M., Khan, M.A. et al. Male sterility systems and their applications in hybrid wheat breeding. CEREAL RESEARCH COMMUNICATIONS 52, 25–37 (2024). https://doi.org/10.1007/s42976-023-00376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-023-00376-4

Keywords

Navigation