Skip to main content

Advertisement

Log in

Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Transcriptome analysis was carried out for wheat seedlings and spikes from hybrid Jingmai 8 and both inbred lines to unravel mechanisms underlying heterosis.

Heterosis, known as one of the most successful strategies for increasing crop yield, has been widely exploited in plant breeding systems. Despite its great importance, the molecular mechanism underlying heterosis remains elusive. In the present study, RNA sequencing (RNA-seq) was performed on the seedling and spike tissues of the wheat (Triticum aestivum) hybrid Jingmai 8 (JM8) and its homozygous parents to unravel the underlying mechanisms of wheat heterosis. In total, 1686 and 2334 genes were identified as differentially expressed genes (DEGs) between the hybrid and the two inbred lines in seedling and spike tissues, respectively. Gene Ontology analysis revealed that DEGs from seedling tissues were significantly enriched in processes involved in photosynthesis and carbon fixation, and the majority of these DEGs expressed at a higher level in JM8 compared to both inbred lines. In addition, cell wall biogenesis and protein biosynthesis-related pathways were also significantly represented. These results confirmed that a combination of different pathways could contribute to heterosis. The DEGs between the hybrid and the two inbred progenitors from the spike tissues were significantly enriched in biological processes related to transcription, RNA biosynthesis and molecular function categories related to transcription factor activities. Furthermore, transcription factors such as NAC, ERF, and TIF-IIA were highly expressed in the hybrid JM8. These results may provide valuable insights into the molecular mechanisms underlying wheat heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BAE:

Biallelic expression

DEGs:

Differentially expressed genes

ELD:

Expression-level dominance

GO:

Gene Ontology

JM8:

Jingmai 8

MAE:

Monoallelic expression

MPV:

Mid-parental value

NAGs:

Non-additive genes

PAE:

Preferallelic expression

TGMS:

Thermosensitive genic male sterile

TY806:

Taiyuan 806

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao JY, Lee SG, Chen C, Zhang XQ, Zhang Y, Liu SQ, Clark T, Wang J, Cao ML, Yang HM, Wang SM, Yu J (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 138:1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci USA 103:12957–12958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilization in the vegetable kingdom. Murray, London

    Book  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism, and inbreeding. Science 28:454–455

    Article  CAS  PubMed  Google Scholar 

  • East EM (1908) Inbreeding in corn. Rep Conn Agric Exp Stn 1907:419–428

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB (2006) Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol J 4:145–167

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES (2012) Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci USA 109:7109–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhang H, Gao Q, Wang LL, Zhang FC, Siva VS, Zhou Z, Song LS, Zhang SC (2013) Transcriptome analysis of artificial hybrid pufferfish Jiyan-1 and its parental species: implications for pufferfish heterosis. PLoS One 8:e58453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu LJ, Wu Y, Jiang MM, Si WN, Zhang XH, Tian DC, Yang SH (2016) Dissimilar manifestation of heterosis in superhybrid rice at early-tillering stage under nutrient-deficient and nutrient-sufficient condition. Plant Physiol 172:1142–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo TT, Yang N, Tong H, Pan QC, Yang XH, Tang JH, Wang JK, Li JS, Yan JB (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158

    Article  PubMed  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GM, Zhu XP, Elling AA, Chen LB, Wang XF, Guo L, Liang MZ, He H, Zhang HY, Chen FF, Qi YJ, Chen RS, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanabe T, Ishikura S, Miyaji N, Sasaki T, Wu LM, Itabashi E, Takada S, Shimizu M, Takasaki-Yasuda T, Osabe K, Peacock WJ, Dennis ES, Fujimoto R (2016) Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:E6704–E6711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XH, Wei YL, Nettleton D, Brummer EC (2009) Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biol 9:107. https://doi.org/10.1186/1471-2229-9-107

    Article  PubMed  PubMed Central  Google Scholar 

  • Li AL, Liu DC, Wu J, Zhao XB, Hao M, Geng SF, Yan J, Jiang XX, Zhang LQ, Wu JY, Yin LJ, Zhang RZ, Wu L, Zheng YL, Mao L (2014) mRNA and Small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li XR, Fridman E, Tesso TT, Yu JM (2015) Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci USA 112:11823–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DY, Huang ZY, Song SH, Xin YY, Mao DH, Lv QM, Zhou M, Tian DM, Tang MF, Wu Q, Liu X, Chen TT, Song XW, Fu XQ, Zhao BR, Liang CZ, Li AH, Liu GZ, Li SG, Hu SN, Cao XF, Yu J, Yuan LP, Chen CY, Zhu LH (2016) Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci USA 113:E6026–E6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HJ, Yang QS, Fan NN, Ming Z, Zhai HJ, Ni ZF, Zhang YR (2017) Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. BMC Genet 18:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Long TA, Rady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya DM, Singh DP (1978) Heterosis in rice. Indian J Genet Plant Breed 38:71–76

    Google Scholar 

  • Moll R, Lonnquist J, Fortuno JV, Johnson E (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni ZF, Kim E-D, Ha M, Lackey E, Liu JX, Zhang YR, Sun QX, Chen ZJ (2009) Altered circadian rhythms regulate growth vigor in hybrids and allopolyploids. Nature 457:327

    Article  CAS  PubMed  Google Scholar 

  • Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, Ossowski S, Lanz C, Nettleton D, Schnable PS (2012) Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res 22:2445–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7(1):18. https://doi.org/10.1186/1741-7007-7-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascher U, Nedbal L (2006) Dynamics of photosynthesis in fluctuating light. Curr Opin Plant Biol 9:671–678

    Article  CAS  PubMed  Google Scholar 

  • Riddle NC, Jiang HM, An LL, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Mccarthy DJ, Smyth GK (2009) EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang LG, Ma LL, Wang YM, Su Y, Wang XC, Li YH, Abduweli A, Cai SH, Liu F, Wang KB, Hua JP (2016) Main effect QTL with dominance determines heterosis for dynamic plant height in upland cotton. G3-Genes Genom Genet 6:3373–3379

    Google Scholar 

  • Shull GH (1908) The composition of a field of maize. J Hered 4:296–301

    Article  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant-cell walls. Science 306:2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Song SH, Qu HZ, Chen C, Hu SN, Yu J (2007) Differential gene expression in an elite hybrid rice cultivar (Oryza sativa L) and its parental lines based on SAGE data. BMC Plant Biol 7(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Song GY, Guo ZB, Liu ZW, Cheng Q, Qu XF, Chen R, Jiang DM, Liu C, Wang W, Sun YF (2013) Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC Plant Biol 13:221. https://doi.org/10.1186/1471-2229-13-221

    Article  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang ZH, Zhang LP, Yang DI, Zhao CP, Zheng YL (2011) Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. Plant Cell Environ 34:389–405

    Article  CAS  PubMed  Google Scholar 

  • Thiemann A, Meyer S, Scholten S (2009) Heterosis in plants: manifestation in early seed development and prediction approaches to assist hybrid breeding. Chin Sci Bull 54:2363–2375

    Article  CAS  Google Scholar 

  • Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T (2007) Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63:21–34

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Lu CM, Zhang QD, Hao NB, Ge QY, Dong FQ, Bai KZ, Kuang TY (2002) Characterization of photosynthesis, photoinhibition and the activities of C(4) pathway enzymes in a superhigh-yield rice, Liangyoupeijiu. Sci China Ser C 45:468–476

    Article  CAS  Google Scholar 

  • Webber AN, Packman LC, Gray JC (1989) A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain. FEBS Lett 242:435–438

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Tao Y, Liu GZ, Chen C, Luo RY, Xia HA, Gan Q, Zeng HP, Lu ZK, Han YN, Li XB, Song GS, Zhai HL, Peng YG, Li DY, Xu HL, Wei XL, Cao ML, Deng HF, Xin YY, Fu XQ, Yuan LP, Yu J, Zhu Z, Zhu LH (2009) A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci USA 106:7695–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo MJ, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    Article  CAS  PubMed  Google Scholar 

  • Zhai RR, Feng Y, Wang HM, Zhan XD, Shen XH, Wu WM, Zhang YX, Chen DB, Dai GX, Yang ZL, Cao LY, Cheng SH (2013) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genom 14(1):19. https://doi.org/10.1186/1471-2164-14-19

    Article  CAS  Google Scholar 

  • Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1:720–731

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Huang DR, Fan YY, Zhang ZH, Ying JZ, Zhuang JY (2016) Detection of QTLs for yield heterosis in rice using a RIL population and its testcross population. Int J Genom. https://doi.org/10.1155/2016/2587823

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Beijing Postdoctoral Research Foundation, Beijing Academy of Agriculture and Forestry Sciences Postdoctoral Research Foundation, National Natural Science Foundation of China (31571641, 31171172), Beijing Municipal Natural Science Foundation (6162009), and Beijing Academy of Agriculture and Forestry Sciences Reserve Program (KJCX20170421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-qing Gao or Chang-ping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yong-jie Liu, Shi-qing Gao, and Yi-miao Tang have contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yj., Gao, Sq., Tang, Ym. et al. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta 247, 1307–1321 (2018). https://doi.org/10.1007/s00425-018-2848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2848-3

Keywords

Navigation