Skip to main content
Log in

Male sterility systems in wheat and opportunities for hybrid wheat development

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The common wheat (Triticum aestivum L.) is a poly(hexa)ploid, derived from an amphi-diploidization process involving the donor species—Triticum urartu, Aegilops speltoides, Triticum turgidum, and Aegilops tauschii. The genetic diversity of the autogamous wheat is narrow, which is a major reason for lesser rate of yield gain in wheat, in contrast to rice and maize. It is desirable to encourage hybrid breeding, i.e., combining different lines into genetically divergent heterotic pools. Thus, hybrid plants are a unique combination of desired alleles produced by crossing between genetically different parental lines. Hybrid seed production in a crop requires male-sterile female parents along with a reliable outcrossing system. The male-sterile female parent prevents pollen shedding and self-fertilization, maintaining the purity of hybrid seeds. An outcrossing system enhances hybrid seed production. This article emphasizes the biological relevance of crossbreeding and self-pollination in wheat, and reviews different male sterility systems which could be utilized for the development of hybrid wheat. Several biotechnological approaches and their practical utility in generating cross-compatible male-sterile female parent lines have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adugna A, Nanda GS, Singh K, Bains NS (2004) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135(3):297–304

    Google Scholar 

  • Adugna A, Nanda GS, Bains NS (2006) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid performance in wheat (Triticum aestivum L.). Acta Agron Hung 54(1):109–120

    Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos Trans R Soc Lond Ser B Biol Sci 358:991–1004

    Google Scholar 

  • Bing-Hua L, Jing-Yang D (1986) A dominant gene for male sterility in wheat. Plant Breeding 97(3):204–209

    Google Scholar 

  • Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95(1/2):125–131

    Google Scholar 

  • Campbell CA, Davidson HR (1979) Effect of temperature, nitrogen fertilization and moisture stress on growth, assimilate distribution and moisture use by manitou spring wheat. Can J Plant Sci 59(3):603–626

    CAS  Google Scholar 

  • Cao W, Somers DJ, Fedak G (2009) A molecular marker closely linked to the region of Rht-D1c and Ms2 genes in common wheat (Triticum aestivum). Genome 52(1):95–99

    CAS  PubMed  Google Scholar 

  • Chakraborty K, Devakumar C (2005) N-acylanilines, herbicide-CHA chimera, and amino acid analogues as novel chemical hybridizing agents for wheat (Triticum aestivum L.). J Agric Food Chem 53(20):7899–7907

    CAS  PubMed  Google Scholar 

  • Chakraborty K, Devakumar C (2006) Evaluation of chemical compounds for induction of male sterility in wheat (Triticum aestivum L.). Euphytica 147(3):329–335

    CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23(2):81–90

    CAS  PubMed  Google Scholar 

  • Chen X, Sun D, Rong D, Sun G, Peng J (2010) Relationship of genetic distance and hybrid performance in hybrids derived from a new photoperiod-thermo sensitive male sterile wheat line 337S. Euphytica 175(3):365–371

    CAS  Google Scholar 

  • Chen XD, Sun DF, Rong DF, Peng JH, Li CD (2011) A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.). J Zhejiang Univ Sci B 12(11):943–950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chowdhury AK, Signh G, Tyagi BS, Bhattacharya PM, Roy AKS (2008) Assessment of wheat (Triticum aestivum L.) cultivars to boron deficiency-induced spike sterility and its impact on grain yield under terai region of West Bengal. Indian J Agric Sci 78(10)

  • Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. New Phytol 166(1):185–192

    CAS  PubMed  Google Scholar 

  • Ciha AJ, Ruminski PG (1991) Specificity of pyridine monocarboxylates and benzoic acid analogues as chemical hybridizing agents in wheat. J Agric Food Chem 39:2072–2076

    CAS  Google Scholar 

  • Colombo N, Favret EA (1996) The effect of gibberellic acid on male fertility in bread wheat. Euphytica 91(3):297–303

    CAS  Google Scholar 

  • Dai X-M, Xu Ru-Hong, Lu Jun, Li Fang, Li Jia-Na, Chai You-Rong (2008) Alien chromosome-specific pcr markers for selection of powdery mildew resistance introgressed from Haynaldia villosa in wheat. Genes Genomics 30(5):439–449

    CAS  Google Scholar 

  • Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J (2012) Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol 78(4–5):515–524

    CAS  PubMed  Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111(1):137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driscoll CJ (1977) Registration of Cornerstone male-sterile wheat germplasm. Crop Sci 17:190

    Google Scholar 

  • Driscoll CJ (1978) Induction and use of the “Cornerstone” male-sterility in wheat. In: 5th Int Wheat Genet Symp, pp 499–502

  • Endo TR, Mukai Y, Yamamoto M, Gill BS (1991) Physical mapping of a male-fertility gene of common wheat. Jpn J Genet 66(3):291–295

    Google Scholar 

  • Engelke T, Hirsche J, Roitsch T (2010) Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. J Exp Bot 61(10):2693–2706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan P, Cui D, Fan HW (1998) Studies on the male sterility induced by CHA-SC 2053 in common wheat. Acta Agric Univ Henanensis 32(2):149–153

    CAS  Google Scholar 

  • Fossati A, Ingold M (1970) A male sterile mutant in Triticum aestivum. Wheat Information Service 30 (8–10)

  • Fotiou C, Damialis A, Krigas N, Halley JM, Vokou D (2010) Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors. Int J Biometeorol 55(1):35–50

    PubMed  Google Scholar 

  • Gao QR, Sun L, Liu B (1996) Induced male sterility and its effects on growth and development of winter wheat. J Shandong Agric Univ 27:241–248

    Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168(2):1087–1096

    PubMed Central  PubMed  Google Scholar 

  • Gomez-Casati DF, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Lett 532(1–2):70–74

    CAS  PubMed  Google Scholar 

  • Grill LK, Turpen TH, Erwin RL (1990) Male sterility in plants. Patent Application WO1990013654A1, PCT/US1990/002404

  • Guan RX, Liu DC, Zhang AM (2001) Genetic analysis and identification of RAPD markers of fertility restorer gene Rf6 for the T. timopheevii cytoplasmic Male sterility of wheat. J Agric Biotechnol 9:159–162

    Google Scholar 

  • Guo RX, Sun DF, Tan ZB, Rong DF, Li CD (2006) Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet 112(7):1271–1276

    CAS  PubMed  Google Scholar 

  • He BR (2000) One breeding method of thermo-sensitive male sterile wheat lines that adapt to the wheat production areas of Huanghuai region of China. China Patent CN1316182

  • He P, Dong P, Song X, Ma L, Hu Y, Jiang T, Wang J, Li H (2003) Study on the thermo-sensitivity of thermo-sensitive male-sterile wheat line A3314. J Triticeae Crops 23(1):1–6

    Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90(6):2370–2374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoagland AR, Elliott FC, Rasmussen LW (1953) Some histological and morphological effects of maleic hydrazide on a spring wheat. Agron J 45(10):468–472

    CAS  Google Scholar 

  • Ikeguchi S, Hasegawa A, Murai T, Tsunewaki K (1999) Basic studies on hybrid wheat breeding using the 1BL-1RS translocation chromosome/Aegilops kotschyi cytoplasm system 1. Development of male sterile and maintainer lines with discovery of a new fertility-restorer. Euphytica 109(1):33–42

    Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42(4):570–583

    CAS  Google Scholar 

  • Ji X, Shiran B, Wan J, Lewis DC, Jenkins CL, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33(6):926–942

    CAS  PubMed  Google Scholar 

  • Jiang ML, Wang DQ, Zhang A, Huang C (1998) Male sterile effect of a new pyridazine compound 9403 on wheat. J China Agric Univ 3(5):39–44

    Google Scholar 

  • Jian-Kui Z, Jing D, Xue-Feng Z, Guo-Dong YU, Xiu-Mei DAI, Ren-Wu R (2009) Fertility alternation of thermo-photo-sensitive genic male sterile (TGMS) Wheat line c412s and its association with adenine phosphoribosyltransferase gene expression. Acta Agron Sin 35(4):662–671

    Google Scholar 

  • Jin F, Ma L, Fan C, Wang A, He B, Li H (2009) Genetic analysis on spike length and spikelet number of 1B/1R and non-1B/1R K type wheat male sterile lines. J Triticeae Crops 29(1):18–23

    Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Springer, Berlin

    Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47(6):784–787

    CAS  PubMed  Google Scholar 

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breeding 27(4):417–437

    Google Scholar 

  • Kempe K, Rubtsova M, Riewe D, Gils M (2013) The production of male-sterile wheat plants through split barnase expression is promoted by the insertion of introns and flexible peptide linkers. Transgenic Res 22(6):1089–1105

    CAS  PubMed  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2014) Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci USA 111:9097–9102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kihara H (1951) Substitution of nucleus and its effect on genome manifestation. Cytologia 16:177–193

    Google Scholar 

  • Kihara H, Tsunewaki K (1964) Some fundamental problems underlying the program for hybrid wheat breeding. Seiken Jiho 16:1–14

    Google Scholar 

  • Kimatu JN, Bao L (2010) Epigenetic polymorphisms could contribute to the genomic conflicts and gene flow barriers resulting to plant hybrid necrosis. Afr J Biotechnol 9(48):8125–8133

    CAS  Google Scholar 

  • Klindworth DL, Williams ND, Maan SS (2002) Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat. Crop Sci 42(5):1447–1450

    Google Scholar 

  • Konagaya K, Ando S, Kamachi S, Tsuda M, Tabei Y (2008) Efficient production of genetically engineered, male-sterile Arabidopsis thaliana using anther-specific promoters and genes derived from Brassica oleracea and B. rapa. Plant Cell Rep 27(11):1741–1754

    CAS  PubMed  Google Scholar 

  • Kumar J, Singh SP, Kumar J, Tuli R (2012) A novel mastrevirus infecting wheat in India. Arch Virol 157:2031–2034

    CAS  PubMed  Google Scholar 

  • Kumar J, Kumar J, Singh SP, Tuli R (2014a) Association of satellites with a mastrevirus in natural infection: complexity of wheat dwarf India virus disease. J Virol 88(12):7093–7104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar J, Kumar J, Singh SP, Tuli R (2014b) βC1 is a pathogenicity determinant: not only for begomovirus but also for mastrevirus. Arch Virol 159(11):3071–3076

  • Kurek I, Dulberger R, Azem A, Tzvi BB, Sudhakar D, Christou P, Breiman A (2002) Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice. Plant Mol Biol 48(4):369–381

    CAS  PubMed  Google Scholar 

  • Laurie DA (1989) Factors affecting fertilization frequency in crosses of Triticum aestivum cv. ‘Highbury’ × Zea mays cv. ‘Seneca 60’. Plant Breed 103(2):133–140

    Google Scholar 

  • Li Y, Zhao C, Zhang F, Sun H, Sun D (2006) Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica 151(2):207–213

    Google Scholar 

  • Liu BH, Deng JY (1986) A dominant gene for male sterility in wheat. Plant Breeding 97(3):204–209

    Google Scholar 

  • Liu CG, Wu YW, Zhang CL, Ren SX, Zhang Y (1997) A preliminary study on the effects of Aegilops crassa cytoplasm on the characters of common wheat. J Genet Genomics 24:241–247

    Google Scholar 

  • Liu CG, Hou N, Liu GQ, Wu YW, Zhang CL, Zhang Y (2002) Studies on fertility genetic characters in D2-type CMS lines of common wheat. J Genet Genomics 29:638–645

    CAS  Google Scholar 

  • Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genom 12:163

    CAS  Google Scholar 

  • Longin CFH, Muhleisen J, Maurer HP, Zhang HL, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125(6):1087–1096

    PubMed  Google Scholar 

  • Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232(2):501–510

    CAS  PubMed  Google Scholar 

  • Lucken KA (1987) Hybrid wheat. In: Heyne EG (ed) Wheat and wheat improvement. American Society of Agronomy, Madison

    Google Scholar 

  • Ma M, Yan Y, Huang L, Chen M, Zhao H (2012) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 10(12):141

    Google Scholar 

  • Maan SS, Kianian SF (2001) Third dominant male sterility gene in common wheat. Wheat Inf Service 93:27–31

    Google Scholar 

  • Maan SS, Carlson KM, Williams ND, Yang T (1987) Chromosomal arm location and gene-centromere distance of a dominant gene for male sterility in wheat. Crop Sci 27(3):494–500

    Google Scholar 

  • Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013) Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 64(5):1381–1392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347(6295):737–741

    CAS  Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2008) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust J Agric Res 59(3):206–213

    CAS  Google Scholar 

  • Martin A, Atienza S, Ramírez M, Barro F, Martín A (2009) Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breed 24(4):397–408

    CAS  Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2010) Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system. Theor Appl Genet 121(6):1093–1101

    CAS  PubMed  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. Paper presented at the Internat Wheat Genet Symp, Saskatoon

  • Merezhko AF (1998) Impact of plant genetic resources on wheat breeding. Euphytica 100(1):295–303

    Google Scholar 

  • Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S (2011) Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm. BMC Plant Biol 11:2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan JM (1980) Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature 285(5767):655–657

    CAS  Google Scholar 

  • Mukai Y, Tsunewaki K (1979) Basic studies on hybrid wheat breeding. Theor Appl Genet 54(4):153–160

    CAS  PubMed  Google Scholar 

  • Mukasa Y, Suzuki T, Honda Y (2007) Emasculation of Tartary buckwheat (Fagopyrum tataricum Gaertn.) using hot water. Euphytica 156(3):319–326

    Google Scholar 

  • Murai K (1998) F1 seed production efficiency by using photoperiod-sensitive cytoplasmic male sterility and performance of F1 hybrid lines in wheat. Breed Sci 48:35–40

    Google Scholar 

  • Murai K (2001) Factors responsible for levels of male sterility in photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines. Euphytica 117(2):111–116

    Google Scholar 

  • Murai K, Tsunewaki K (1993) Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67(1):41–48

    Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29(2):169–181

    PubMed  Google Scholar 

  • Murai K, Tsutui I, Kawanishi Y, Ikeguchi S, Yanaka M, Ishikawa N (2008) Development of photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines showing high male sterility under long-day conditions and high seed fertility under short-day conditions. Euphytica 159(3):315–323

    Google Scholar 

  • Niu N, Zhang G, Cao Y, Zhang Y, Wei F (2008) Directional transduction of male sterile gene rfv 1 of NIAN type in wheat. Front Agric China 2(4):386–390

    Google Scholar 

  • Nonaka S, Toriyama K, Tsunewaki K, Shimada T (1993) Breeding of male-sterile lines and their maintainer lines by backcross method for hybrid wheat production using an Sv type cytoplasm and a 1BL-1RS chromosome. Japan J Breed 43:567–574

    Google Scholar 

  • Oehler E, Ingold M (1966) New cases of male sterility and new restorer source in T. aestivum. Wheat Inf Service 22:1–3

    Google Scholar 

  • Ohtsuka I, Konzak CF (2002) Cytoplasmic male sterility-based system for hybrid wheat plant and seed production

  • Otsuka J, Yamaguchi S, Chigira O, Kato K (2010) Application of hot water emasculation to Acacia auriculiformis for controlled pollination. J Forest Res 15(3):210–216

    Google Scholar 

  • Panayotov I, Gotsova DK, Gotsov K (1986) Male fertility restoration against alien cytoplasm. I. Comparison between the restoration abilities of three groups of lines. Wheat Inf Service 63:7–10

    Google Scholar 

  • Parodi P, Gaju M (2009a) Male sterility induced by the chemical hybridizing agent clofencet on wheat, Triticum aestivum and T. turgidum var. durum. Cien Inv Agr 36(2):267–276

    Google Scholar 

  • Parodi PC, Gaju MA (2009b) Male sterility induced by the chemical hybridizing agent clofencet on wheat, Triticum aestivum and T. turgidum var. durum. Ciencia e Investigación Agraria 36:267–276

    Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7(5):199–203

    CAS  PubMed  Google Scholar 

  • Phan HA, Li SF, Parish RW (2012) MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol 78(1–2):171–183

    CAS  PubMed  Google Scholar 

  • Pickett AA (1993) Cereals: seed shedding, dormancy and longevity. Aspects Appl Biol/Assoc Appl Biol 35:17–28

    Google Scholar 

  • Rao MK, Devi KU, Arundhati A (1990) Applications of genie male sterility in plant breeding. Plant Breed 105(1):1–25

    Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    PubMed  Google Scholar 

  • Saini HS, Aspinall D (1982) Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid. Funct Plant Biol 9(5):529–537

    CAS  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107(19):8569–8574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sasakuma T, Ohtsuka I (1979) Cytoplasmic effects of Aegilops species having D genome in wheat. I. Cytoplasmic differentiation among five species regarding pistilody induction. Seiken Ziho 27:59–65

    Google Scholar 

  • Sasakuma T, Maan SS, Williams ND (1978) EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci 18(5):850–853

    Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138(4):2165–2173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaowen Y, Shan R (1980) Studies on the ve-type male sterility of wheat. Acta Genet Sin 7(1):26–35

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553

    CAS  PubMed  Google Scholar 

  • Singh SK, Chatrath R, Mishra B (2010a) Perspective of hybrid wheat research: a review. Indian J Agric Sci 80

  • Singh SP, Pandey T, Srivastava R, Verma PC, Singh PK, Tuli R, Sawant SV (2010b) BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. Plant Biotechnol J 8(9):1005–1022

    CAS  PubMed  Google Scholar 

  • Singh SP, Vogel-Mikuš K, Arčon I, Vavpetič P, Jeromel L, Pelicon P, Kumar J, Tuli R (2013) Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J Exp Bot 64(11):3249–3260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SP, Vogel-Mikuš K, Vavpetič P, Jeromel L, Pelicon P, Kumar J, Tuli R (2014a) Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related genotypes. Planta  240(2):277–289

    CAS  PubMed  Google Scholar 

  • Singh SP, Jeet R, Kumar J, Shukla V, Srivastava R, Mantri SS, Tuli R (2014b) Comparative transcriptional profiling of two wheat genotypes, with contrasting levels of minerals in grains, shows expression differences during grain filling. PLoS One doi:10.1371/journal.pone.0111718

  • Snape J, Pánková K (2006) Triticum aestivum (wheat). Encyclopedia of life sciences. Wiley, New York

    Google Scholar 

  • Suneson CA (1962) Use of Pugsley’s sterile wheat in cross breeding. Crop Sci 2(6):534–535

    Google Scholar 

  • Takada K, Ishimaru K, Minamisawa K, Kamada H, Ezura H (2005) Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Sci 169(5):935–942

    CAS  Google Scholar 

  • Tan CH, Yu GD, Yang PF, Zhang ZH, Pan Y, Zheng J (1992) Preliminary study on sterility of thermo-photo-sensitive genic male sterile wheat in Chongqing. Southwest China J Agric Sci 5:31–35

    Google Scholar 

  • Tang Z, Zhang L, Yang D, Zhao C, Zheng Y (2011) Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. Plant Cell Environ 34(3):389–405

    CAS  PubMed  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159(2):721–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tepliakov BI, Maksimenko VP, Chekurov VM (1974) The influence of decreased temperatures on meiotic disorders in spring wheat. Tsitol Genet 8(5):406–408

    CAS  PubMed  Google Scholar 

  • Trottet M, Deffains D, Jahier J (2010) A novel partial male sterility resource in bread wheat. Breed Sci 60(4):454–457

    Google Scholar 

  • Tsunewaki K (1993) Genome-plasmon interaction in wheat. Jpn J Genet 68(1):1–34

  • Virmani SS, Donald LS (1996) Hybrid rice. In: Advances in agronomy, vol 57. Academic Press, pp 377–462

  • Wei L, Yan Z-X, Ding Y (2008) Mitochondrial RNA editing of F0-ATPase subunit 9 gene (atp9) transcripts of Yunnan purple rice cytoplasmic male sterile line and its maintainer line. Acta Physiol Plant 30(5):657–662

    CAS  Google Scholar 

  • Wells DG, Caffey HR (1956) Scissor emasculation of wheat and barley. Agron J 48(11):496–499

    Google Scholar 

  • Wilson P, Driscoll CJ (1983) Hybrid wheat. In: Frankel R (ed) Monographs on theoretical and applied genetics, vol 6, Heterosis edn. Springer, Berlin

    Google Scholar 

  • Wilson JA, Ross WM (1962) Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Inf Service 14 (29–30)

  • Wu YW, Zhang CL, Zhang Y (1995) Breeding of wheat male sterile line with Aegilops crassa 6x cytoplasm and research of its characters. Chin Sci Bull 3:243–247

    Google Scholar 

  • Xi Y-J, Ma X-F, Zhong H, Liu S-D, Wang Z-L, Song Y-Y, Zhao C-H (2011) Characterization of a male sterile mutant from progeny of a transgenic plant containing a leaf senescence-inhibition gene in wheat. Euphytica 177(2):241–251

    CAS  Google Scholar 

  • Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B (2003) Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor Appl Genet 107(8):1500–1504

    CAS  PubMed  Google Scholar 

  • Xu C, Liu Z, Zhang L, Zhao C, Yuan S, Zhang F (2013) Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line. Protoplasma 250:415–422

    PubMed  Google Scholar 

  • Yang M, Gu J, Liu K, Li S, Tian Y, Yang H, Zhou J, Liu D, Chen P (2006) Ecological adaptability of thermo–photo–sensitive genic male sterile wheat K78S in Yunnan Province. Zuo wu xue bao 32:1618–1624

    Google Scholar 

  • Yang L, Liu BH, Zhai HQ, Wang SH, Liu HW et al (2009) Dwarf male-sterile wheat: a revolutionary breeding approach to wheat. Vienna, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency

  • Yuan A-P, Hou A-B, Zhang F-Y, Guo Y-D (2008) Inheritance and effects of the photoperiod sensitivity in foxtail millet (Setaria italica P. Beauv). Hereditas 145:147–153

  • Zhang GS (1992) Breeding of wheat male sterile line having Aegilops uniaristata cytoplasm. Chin Sci Bull 7:641–645

    Google Scholar 

  • Zhang J, Feng L, He L, Yu G (2003) Thermo-sensitive period and critical temperature of fertility transition of thermo-photo-sensitive genic male sterile wheat. Ying Yong Sheng Tai Xue Bao 14(1):57–60

    CAS  PubMed  Google Scholar 

  • Zhou KJ, Wang SH, Feng YQ, Liu ZX, Wang GX (2006) The 4E-ms system of producing hybrid wheat. Crop Sci 46:250–255

    Google Scholar 

  • Zhou K, Wang S, Feng Y, Ji W, Wang G (2008) A new male sterile mutant LZ in wheat (Triticum aestivum L.). Euphytica 159(3):403–410

    CAS  Google Scholar 

  • Zhou L, Song G, He B, Hu YG (2011) A ras GTPase-activating protein-binding protein, TaG3BP, associated with the modulation of male fertility in a thermo-sensitive cytoplasmic male sterile wheat line. Mol Genet Genomics 286(5–6):417–431

    CAS  PubMed  Google Scholar 

  • Zhu Y, Saraike T, Yamamoto Y, Hagita H, Takumi S, Murai K (2008) orf260cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiol 49(11):1723–1733

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir P. Singh.

Additional information

Communicated by A.K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Srivastava, R. & Kumar, J. Male sterility systems in wheat and opportunities for hybrid wheat development. Acta Physiol Plant 37, 1713 (2015). https://doi.org/10.1007/s11738-014-1713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1713-7

Keywords

Navigation