Skip to main content
Log in

Isolation and characterization of wood-decomposing basidiomycetes from the Andean Forest in Boyacá, Colombia

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study explores the biotechnological potential of lignocellulolytic fungi collected in an oak forest. Fungal collections were obtained from natural reserves located in Boyacá-Colombia, ranging from 2700 to 3000 m.a.s.l. Twenty-three strains were isolated on malt agar, molecular characterization was performed, and ligninolytic and cellulolytic enzymatic activities were screened. Several white-rot fungi of biotechnological importance were identified as follows: Trametes sp., Trametes versicolor, Trametes villosa, Pycnoporus sanguineus, Bjerkandera adjusta, Lentinula boryana, Panus conchatus, Antrodia neotropica, Brunneoporus malicola, Laetiporus gilbertsonii, Stereum sp., Ganoderma sp., and Dichomitus sp. The strains T. versicolor 0554 and 0583, T. villosa 0562, and B. adusta 0556 showed the highest response in the qualitative enzymatic assays. These strains were used to determine their ability to decolorate the dyes aniline blue and Congo red, and it was found that T. villosa 0562 reached a level of decolorization close to 90% after 48 h of submerged culture. The fungal strains obtained here could offer alternatives to develop a process to accomplish sustainable development objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caiafa MV, Gómez-Hernández M, Williams-Linera G, Ramírez-Cruz V (2017) Functional diversity of macromycete communities along an environmental gradient in a Mexican seasonally dry tropical forest. Fungal Ecol 28:66–75. https://doi.org/10.1016/j.funeco.2017.04.005

    Article  Google Scholar 

  2. Mathieu Y, Gelhaye E, Dumarçay S, Gérardin P, Harvengt L, Buée M (2013) Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology. J Microbiol Methods 92:157–163. https://doi.org/10.1016/j.mimet.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  3. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20. https://doi.org/10.1002/jobm.200900338

    Article  CAS  PubMed  Google Scholar 

  4. Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778. https://doi.org/10.1002/elsc.201800039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  CAS  Google Scholar 

  6. Kudanga T, Le Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98:6525–6542. https://doi.org/10.1007/s00253-014-5810-8

    Article  CAS  PubMed  Google Scholar 

  7. Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P, de Jesús R-A, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D (2020) Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 161:1099–1116. https://doi.org/10.1016/j.ijbiomac.2020.06.047

    Article  CAS  PubMed  Google Scholar 

  8. Suay I, Arenal F, Asensio FJ, Basilio A, Angeles Cabello M, Teresa Díez M, García JB, González del Val A, Gorrochategui J, Hernández P, Peláez F, Francisca Vicente M (2000) Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek 78:129–140. https://doi.org/10.1023/A:1026552024021

    Article  CAS  PubMed  Google Scholar 

  9. Rosa LH, Machado KMG, Jacob CC, Capelari M, Rosa CA, Zani CL (2003) Screening of Brazilian basidiomycetes for antimicrobial activity. Mem Inst Oswaldo Cruz 98:967–974. https://doi.org/10.1590/s0074-02762003000700019

    Article  PubMed  Google Scholar 

  10. El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31:668–677. https://doi.org/10.1016/j.tibtech.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  11. Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T, Agathos SN (2009) Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25:331–339. https://doi.org/10.1007/s11274-008-9897-x

    Article  CAS  Google Scholar 

  12. Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S (2020) Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 25:2811. https://doi.org/10.3390/molecules25122811

    Article  CAS  PubMed Central  Google Scholar 

  13. Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Biotechnol 21:1415–1423. https://doi.org/10.1007/s11274-005-5774-z

    Article  CAS  Google Scholar 

  14. Sasson A, Malpica C (2018) Bioeconomy in Latin America. Bioeconomy 40:40–45. https://doi.org/10.1016/j.nbt.2017.07.007

    Article  CAS  Google Scholar 

  15. Antonelli A, Smith RJ, Simmonds MSJ (2019) Unlocking the properties of plants and fungi for sustainable development. Nat Plants 5:1100–1102. https://doi.org/10.1038/s41477-019-0554-1

    Article  PubMed  Google Scholar 

  16. Howes M-JR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, Farlow A, Li L, Cazar M-E, Leaman DJ, Prescott TAK, Milliken W, Martin C, De Canha MN, Lall N, Qin H, Walker BE, Vásquez-Londoño C, Allkin B, Rivers M, Simmonds MSJ, Bell E, Battison A, Felix J, Forest F, Leon C, Williams C, Nic Lughadha E (2020) Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet 2:463–481. https://doi.org/10.1002/ppp3.10138

    Article  Google Scholar 

  17. Arbeláez-Cortés E (2013) Knowledge of Colombian biodiversity: published and indexed. Biodivers Conserv 22:2875–2906. https://doi.org/10.1007/s10531-013-0560-y

    Article  Google Scholar 

  18. Noreña PA, González Muñoz A, Mosquera-Rendón J, Botero K, Cristancho MA (2018) Colombia, an unknown genetic diversity in the era of Big Data. BMC Genomics 19:859. https://doi.org/10.1186/s12864-018-5194-8

    Article  Google Scholar 

  19. Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding T-S, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019. https://doi.org/10.1038/nature03850

    Article  CAS  PubMed  Google Scholar 

  20. Andrés Etter L, Villa A (2000) Andean forests and farming systems in part of the Eastern Cordillera (Colombia). Mt Res Dev 20:236–245. https://doi.org/10.1659/0276-4741(2000)020[0236:AFAFSI]2.0.CO;2

    Article  Google Scholar 

  21. Ryan MJ, McCluskey K, Verkleij G, Robert V, Smith D (2019) Fungal biological resources to support international development: challenges and opportunities. World J Microbiol Biotechnol 35:139. https://doi.org/10.1007/s11274-019-2709-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  23. Vilgalys R, Sun BL (1994) Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc Natl Acad Sci 91:4599. https://doi.org/10.1073/pnas.91.10.4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alberto E, Wright J (1997) Aniline agar: a simple medium useful in characterizing white-rot higher fungi in culture. Mycotaxon 62:375–388

    Google Scholar 

  25. Pointing S (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  26. Montoya S, Sánchez ÓJ, Levin L (2014) Evaluation of endoglucanase, exoglucanase, laccase, and lignin peroxidase activities on ten white-rot fungi. Biotecnol En El Sect Agropecu Agroindustrial 12:115–124

    Google Scholar 

  27. Abe CA, Faria CB, De Castro FF, De Souza SR, Santos FC, Da Silva CN, Tessmann DJ, Barbosa-Tessmann IP (2015) Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. Int J Mol Sci 16:15328–15346. https://doi.org/10.3390/ijms160715328

    Article  CAS  PubMed  Google Scholar 

  28. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  29. Kim SW, Hwang HJ, Park JP, Cho YJ, Song CH, Yun JW (2002) Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Lett Appl Microbiol 34:56–61. https://doi.org/10.1046/j.1472-765x.2002.01041.x

    Article  CAS  PubMed  Google Scholar 

  30. Lueangjaroenkit P, Teerapatsakul C, Chitradon L (2018) Morphological characteristic regulation of ligninolytic enzyme produced by Trametes polyzona. Mycobiology 46:396–406. https://doi.org/10.1080/12298093.2018.1537586

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hernández C, Farnet Da Silva A-M, Ziarelli F, Perraud-Gaime I, Gutiérrez-Rivera B, García-Pérez JA, Alarcón E (2017) Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification. Appl Microbiol Biotechnol 101:1189–1201. https://doi.org/10.1007/s00253-016-7890-0

    Article  CAS  PubMed  Google Scholar 

  32. Schoch CL, Seifert KA (2011) DNA barcoding in fungi. https://www.accessscience.com/content/dna-barcoding-in-fungi/YB110060. Accessed 24 Jun 2021

  33. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brown SP, Rigdon-Huss AR, Jumpponen A (2014) Analyses of ITS and LSU gene regions provide congruent results on fungal community responses. Fungal Ecol 9:65–68. https://doi.org/10.1016/j.funeco.2014.02.002

    Article  Google Scholar 

  35. Geml J, Geiser DM, Royse DJ (2004) Molecular evolution of Agaricus species based on ITS and LSU rDNA sequences. Mycol Prog 3:157–176. https://doi.org/10.1007/s11557-006-0086-8

    Article  Google Scholar 

  36. Tomsovský M, Kolarik M, Pazuotová S, Homolka L (2006) Molecular phylogeny of European Trametes (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences. Nova Hedwig 82:269–280. https://doi.org/10.1127/0029-5035/2006/0082-0269

    Article  Google Scholar 

  37. Justo A, Hibbett DS (2011) Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five–marker dataset. Taxon 60:1567–1583. https://doi.org/10.1002/tax.606003

    Article  Google Scholar 

  38. Paton A, Antonelli A, Carine M, Forzza RC, Davies N, Demissew S, Dröge G, Fulcher T, Grall A, Holstein N, Jones M, Liu U, Miller J, Moat J, Nicolson N, Ryan M, Sharrock S, Smith D, Thiers B, Victor J, Wilkinson T, Dickie J (2020) Plant and fungal collections: current status, future perspectives. Plants People Planet 2(5):499–514. https://doi.org/10.1002/ppp3.10141

    Article  Google Scholar 

  39. Wang Y, Liu Y, Hu Y (2014) Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr Polym 111:324–332. https://doi.org/10.1016/j.carbpol.2014.03.083

    Article  CAS  PubMed  Google Scholar 

  40. Zengin G, Karanfil A, Uren MC, Kocak MS, Sarikurkcu C, Gungor H, Nancy Picot CM, Mahomoodally MF (2016) Phenolic content, antioxidant and enzyme inhibitory capacity of two Trametes species. RSC Adv 6:73351–73357. https://doi.org/10.1039/C6RA09991B

    Article  CAS  Google Scholar 

  41. Knežević A, Stajić M, Sofrenić I, Stanojković T, Milovanović I, Tešević V, Vukojević J (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS One 13:e0203064. https://doi.org/10.1371/journal.pone.0203064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bains A, Chawla P (2020) In vitro bioactivity, antimicrobial and anti-inflammatory efficacy of modified solvent evaporation assisted Trametes versicolor extract. 3 Biotech 10:404. https://doi.org/10.1007/s13205-020-02397-w

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cerig S (2021) A safety assessment of hot aqueous mycelium extracts from Trametes versicolor and Lepista nuda as a food supplement. Biologia (Bratisl). https://doi.org/10.1007/s11756-021-00761-6

    Article  Google Scholar 

  44. Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M (2021) Trametes versicolor in lignocellulose-based bioeconomy: state of the art, challenges and opportunities. Bioresour Technol 330:124997. https://doi.org/10.1016/j.biortech.2021.124997

    Article  CAS  PubMed  Google Scholar 

  45. Li H-X, Zhang R-J, Tang L, Zhang J-H, Mao Z-G (2014) In vivo and in vitro decolorization of synthetic dyes by laccase from solid state fermentation with Trametes sp. SYBC-L4. Bioprocess Biosyst Eng 37:2597–2605. https://doi.org/10.1007/s00449-014-1237-y

    Article  CAS  PubMed  Google Scholar 

  46. Dhillon GS, Kaur S, Brar SK (2012) In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int Biodeterior Biodegrad 72:67–75. https://doi.org/10.1016/j.ibiod.2012.05.012

    Article  CAS  Google Scholar 

  47. Tapia-Tussell R, Pérez-Brito D, Torres-Calzada C, Cortés-Velázquez A, Alzate-Gaviria L, Chablé-Villacís R, Solís-Pereira S (2015) Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules 20:15147–15157. https://doi.org/10.3390/molecules200815147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daâssi D, Zouari-Mechichi H, Frikha F, Martinez MJ, Nasri M, Mechichi T (2013) Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain. 3 Biotech 3(2): 115–125. https://link.springer.com/article/10.1007/s13205-012-0076-2

  49. Iark D, dos Reis Buzzo AJ, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, ..., Peralta RM (2019) Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technol 289: 121655. https://www.sciencedirect.com/science/article/pii/S0960852419308855

  50. Yehia RS, Rodriguez-Couto S (2017) Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju. Appl Biochem Microbiol 53(2): 222–229. https://link.springer.com/content/pdf/10.1134/S0003683817020181.pdf

  51. Lu R, Ma L, He F, Yu D, Fan R, Zhang Y, ..., Yang Y (2016) White-rot fungus Ganoderma sp. En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations. Bioprocess Biosyst Eng 39(3): 381–390. https://link.springer.com/content/pdf/10.1007/s00449-015-1521-5.pdf

  52. Gill PK, Arora DS, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. J Ind Microbiol Biotechnol 28(4): 201–203. https://link.springer.com/article/10.1038%2Fsj%2Fjim%2F7000222

  53. Gao T, Qin D, Zuo S, Peng Y, Xu J, Yu B, ..., Dong J (2020) Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresources Bioprocess 7(1): 1–12. https://link.springer.com/article/10.1186/s40643-020-00340-8

  54. Montoya S, Orrego CE, Levin L (2012) Growth, fruiting and lignocellulolytic enzyme production by the edible mushroom Grifola frondosa (maitake). World J Microbiol Biotechnol 28:1533–1541. https://doi.org/10.1007/s11274-011-0957-2

    Article  CAS  PubMed  Google Scholar 

  55. Pleszczyńska M, Wiater A, Siwulski M, Szczodrak J (2013) Successful large-scale production of fruiting bodies of Laetiporus sulphureus (Bull.: Fr.) Murrill on an artificial substrate. World J Microbiol Biotechnol 29:753–758. https://doi.org/10.1007/s11274-012-1230-z

    Article  CAS  PubMed  Google Scholar 

  56. Andriani A, Maharani A, Yanto DHY, Pratiwi H, Astuti D, Nuryana I, Agustriana E, Anita SH, Juanssilfero AB, Perwitasari U, Pantouw CF, Nurhasanah AN, Windiastri VE, Nugroho S, Widyajayantie D, Sutiawan J, Sulistyowati Y, Rahmani N, Ningrum RA, Yopi (2020) Sequential production of ligninolytic, xylanolytic, and cellulolytic enzymes by Trametes hirsuta AA-017 under different biomass of Indonesian sorghum accessions-induced cultures. Bioresour Technol Rep 12:100562. https://doi.org/10.1016/j.biteb.2020.100562

    Article  Google Scholar 

  57. Peraza-Jiménez K, De la Rosa-García S, Huijara-Vasconselos JJ, Reyes-Estebanez M, Gómez-Cornelio S (2022) Enzymatic bioprospecting of fungi isolated from a tropical rainforest in Mexico. J Fungi 8:22. https://doi.org/10.3390/jof8010022

    Article  CAS  Google Scholar 

  58. Marrugo G, Valdés CF, Chejne F (2016) Characterization of Colombian agroindustrial biomass residues as energy resources. Energy Fuels: 6b01596–. https://doi.org/10.1021/acs.energyfuels.6b0159

  59. Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme Microb Technol 36:223–231. https://doi.org/10.1016/j.enzmictec.2004.07.015

    Article  CAS  Google Scholar 

  60. Geethangili M, Tzeng Y-M (2011) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Alternat Med 2011:212641. https://doi.org/10.1093/ecam/nep108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ganesan N, Baskaran R, Velmurugan BK, Thanh NC (2019) Antrodia cinnamomea—an updated minireview of its bioactive components and biological activity. J Food Biochem 43:e12936. https://doi.org/10.1111/jfbc.12936

    Article  PubMed  Google Scholar 

  62. Basnet BB, Liu L, Bao L, Liu H (2017) Current and future perspective on antimicrobial and anti-parasitic activities of Ganoderma sp.: an update. Mycology 8:111–124. https://doi.org/10.1080/21501203.2017.1324529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Fondo de Ciencia, Tecnología, e Innovación del Sistema General de Regalías (Colombia), the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas, Minciencias, Programa Colombia BIO, Gobernación de Boyacá, through Contract No. FP80740-545–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Ortiz-Rosas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Derlene Attili Agellis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Quitian, Z., Quitian-Romero, J., Moreno-Buitrago, A. et al. Isolation and characterization of wood-decomposing basidiomycetes from the Andean Forest in Boyacá, Colombia. Braz J Microbiol 53, 1425–1437 (2022). https://doi.org/10.1007/s42770-022-00760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00760-y

Keywords

Navigation