Skip to main content
Log in

Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Four hundred endophytic fungi isolates with different colony morphologies were isolated from roots of Hordeum vulgare L. collected from un-engineered landfills (the measured cadmium was 0.9 mg kg−1) of Kermanshah province in West Iran. Based on morphology and phylogeny of DNA sequence data for the internal transcribed spacer (ITS) rDNA and comparing the sequences with that available in NCBI database, 11 isolates are identified as dark septate endophytes (DSE) including Alternaria alternata, Microdochium bolleyi, Bipolaris zeicola, Alternaria sp., and Pleosporales sp., and the other nine are not dark septate endophytes (non-DSE) including Fusarium redolens, Fusarium tricinctum, Fusarium monliforme, Clonostachys rosea, and Epicoccum nigrum. Tolerance of DSE and non-DSE strains for Cd were investigated in potato dextrose agar medium. Minimum inhibitory concentrations (MIC) of Cd from nitrate salt source (Cd (NO3)2) and EC50 were determined. The means of MIC and EC50 values for DSE fungi species were 1254.5 and 209.74 mg/kg, compared to 800 and 150.3 mg/kg for non-DSEs. Among the endophytic fungi isolated, Alternaria sp. (TBR5) and Bipolaris zeicola (Tw26) showed the highest tolerance to Cd with a MIC value of 2000 mg/L and 1800 mg/L, respectively. Barley plants were inoculated with TBR5 and Tw26 in Cd-added sands (0, 10, 30, 60 mg Cd/kg sand). In terms of Cd accumulation, our results showed that TBR5 and Tw26 inoculation increased the amount of Cd in the barley roots. TBR5 and Tw26 significantly improved (p < 0.05) plant growth in the presence of Cd by enhancing plant growth attributes such as chlorophyll content, root weight, plant length, fresh weight, and dry weight of plants. This is the first study on the abundance and identification of endophytic root fungi of barley in a cadmium-contaminated soil in Iran. The results of this study showed that DSE and non-DSE have the potential to improve the efficiency of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  2. Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah S et al (2017) Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicol Environ Saf 143:236–248

    Article  CAS  PubMed  Google Scholar 

  3. Perronnet K, Schwartz C, Gérard E, Morel JL (2000) Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil 227:257–263

    Article  CAS  Google Scholar 

  4. Zhan F, He Y, Li T, Yang YY, Toor GS, Zhao Z (2015) Tolerance and antioxidant response of a dark septate endophyte (DSE), Exophiala pisciphila, to cadmium stress. Bull Environ Contam Toxicol 94:96–102

    Article  CAS  PubMed  Google Scholar 

  5. Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ 14:177–183

    CAS  Google Scholar 

  6. Tesfai M, Dresher S (2009) Assessment of benefits and risks of landfill materials for agriculture in Eritrea. Waste Manag 29:851–858

    Article  PubMed  Google Scholar 

  7. Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67:2148–2155

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Zhang Y, Liu M, Shi X, Zhao Z (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632

    Article  PubMed  Google Scholar 

  9. Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    Article  CAS  Google Scholar 

  10. Shenker M, Fan T-M, Crowley D (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098

    Article  CAS  PubMed  Google Scholar 

  11. Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  CAS  PubMed  Google Scholar 

  12. Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediat 12:535–549

    Article  CAS  Google Scholar 

  13. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  14. Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ, Ullah R, Jung BK, Park CE, Ur-Rehman S, Lee IJ, Shin JH (2017a) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188

    Article  CAS  PubMed  Google Scholar 

  15. Li H-Y, Li D-W, He C-M, Zhou Z-P, Mei T, Xu H-M (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in China. Fungal Ecol 5:309–315

    Article  Google Scholar 

  16. Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee I-J, Shin J-H (2017b) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135

    Article  CAS  Google Scholar 

  17. Zhao D, Li T, Shen M, Wang J, Zhao Z (2015) Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: evidence from RNA-seq data. Microbiol Res 170:27–35

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  19. Urban A, Puschenreiter M, Strauss J, Gorfer M (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18:339–354

    Article  PubMed  Google Scholar 

  20. Zhang YY, Liu JH, Zhou YM, Gong TY, Wang J, Ge YL (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 206:1100–1107

    Article  Google Scholar 

  21. Shakeri A, Yousefi F (2018) Source and health risk assessment of potentially toxic elements in the un-engineered landfills soil of Kermanshah province. J Eng Geol 12:11

    Google Scholar 

  22. Liu C, Cui J, Jiang G, Chen X, Wang L, Fang C (2013) Soil heavy metal pollution assessment near the largest landfill of China. Soil Sediment Contam 22:390–403

    Article  CAS  Google Scholar 

  23. Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572

    Article  Google Scholar 

  24. Sieber T, Grünig C (2013) Fungal root endophytes. In: Eshel A, Beeckman T (eds) Plant Roots: The Hidden Half. CRC Press, Taylor & Francis Group, Boca Raton, pp 31–49

    Google Scholar 

  25. Robert V, Szoke S, Jabas B, Vu D, Chouchen O, Blom E, Cardinali G (2011) BioloMICS Software: Biological data management, identification, classification and statistics. Open Appl Inform J 5:87–98

    Article  Google Scholar 

  26. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  27. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR protocols: a guide to methods and applications. 18:315–322

  28. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  29. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235

    Article  CAS  PubMed  Google Scholar 

  30. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  31. Woudenberg JH, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schnoor JL (2004) Australasian soil contamination gets attention. Environ Sci Technol 38(3):53A

    Article  CAS  PubMed  Google Scholar 

  33. Wong S, Li X, Zhang G, Qi S, Min Y (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44

    Article  CAS  PubMed  Google Scholar 

  34. Su C (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Crit 3:24

    Google Scholar 

  35. Glynou K, Ali T, Buch AK, Haghi Kia S, Ploch S, Xia X, Çelik A, Thines M, Maciá-Vicente JG (2016) The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microb 18:2418–2434

    Article  CAS  Google Scholar 

  36. Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102:1012–1026

    Article  PubMed  Google Scholar 

  37. Sánchez Márquez S, Bills GF, Acuña LD, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Article  Google Scholar 

  38. Sieber TN, Waisel Y, Eshel A, Kafkafi U (2002) Fungal root endophytes. Plant roots: the Hidden Half. CRC Press, Taylor & Francis Group, Boca Raton, pp 887–917

    Book  Google Scholar 

  39. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption /+potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    Article  CAS  PubMed  Google Scholar 

  40. Macia-Vicente JG, Jansson HB, Abdullah SK, Descals E, Salinas J, Lopez-Llorca LV (2008) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64:90–105

    Article  CAS  PubMed  Google Scholar 

  41. Vujanovic V, Hamel C, Yergeau E, St-Arnaud M (2006) Biodiversity and biogeography of Fusarium species from northeastern North American asparagus fields based on microbiological and molecular approaches. Microb Ecol 51:242–255

    Article  PubMed  Google Scholar 

  42. Yates I, Bacon C, Hinton D (1997) Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis 81:723–728

    Article  CAS  PubMed  Google Scholar 

  43. Mandyam K, Loughin T, Jumpponen A (2010) Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821

    Article  PubMed  Google Scholar 

  44. David AS, Haridas S, LaButti K, Lim J, Lipzen A, Wang M, Barry K, Grigoriev IV, Spatafora JW, May G (2016) Draft genome sequence of Microdochium bolleyi, a dark septate fungal endophyte of beach grass. Genome Announc 4(2)

  45. Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One 7(10):e47968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Likar M, Regvar M (2013) Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370:593–604

    Article  CAS  Google Scholar 

  47. Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233:25–32

    Article  PubMed  Google Scholar 

  48. Khan AR, Ullah I, Khan AL, Park GS, Waqas M, Hong SJ, Jung BK, Kwak Y, Lee IJ, Shin JH (2015) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environ Sci Pollut Res 22:14032–14042

    Article  CAS  Google Scholar 

  49. Alvarenga P, Goncalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samad Jamali.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Derlene Attili Agellis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadmani, L., Jamali, S. & Fatemi, A. Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Braz J Microbiol 52, 1097–1106 (2021). https://doi.org/10.1007/s42770-021-00493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00493-4

Keywords

Navigation