Skip to main content
Log in

Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L.

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Dark septate endophyte (DSE) fungi are the most frequent colonists on the roots of Salix caprea in highly metal-contaminated soils. The present study was performed to obtain insights into the physiology and potential role(s) of DSE fungi for Salix caprea growing in metal-enriched sites.

Methods

Fungal isolates from S. caprea roots were identified using molecular methods, and tested for their tolerance and metal accumulation in axenic cultures. In addition, an inoculation experiment was performed to monitor the effects of the fungi on the metal uptake by the plant host. Fitness of S. caprea cuttings was assessed by photosynthetic pigment quantification and measurements of transpiration.

Results

Fungal isolates were identified as members of the Phialophora/Cadophora complex. They showed different levels of metal tolerance and maintained growth on metal-enriched media. In comparison to non-inoculated cuttings, the DSE-inoculated cuttings had lower leaf Cd content, and for isolates DB146 and DB148, also lower Zn concentrations. All DSE isolates increased the chlorophyll levels of the cuttings, with isolate DB146 also positively affecting the transpiration rate of S. caprea.

Conclusions

Our findings suggest that DSE reduced the metal uptake by the S. caprea cuttings, thus suggesting a beneficial role for S. caprea in metal-enriched soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonising Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Linares DR, Grosch R, Restrepo S, Krumbein A, Franken P (2011) Effects of dark septate endophytes on tomato plant performance. Mycorrhiza 21:413–422

    Article  PubMed  Google Scholar 

  • Anonymus (1964) ISCC-NBS color-name charts illustrated with centroid colors. The NBS/IBCC Color System—http://www.anthus.com/Colors.html. Accessed 8 February 2013

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metalophyte Thlaspi caerulenscens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  PubMed  CAS  Google Scholar 

  • Barrow J (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  PubMed  CAS  Google Scholar 

  • Borišev M, Pajević S, Nikolić N, Borivoj K, Župunski M, Kebert M, Pilipović A, Orlović S (2012) Response of Salix alba L. to heavy metals and diesel fuel contamination. Afr J Biotechnol 11:14313–14319

    Google Scholar 

  • Cazares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416

    Article  PubMed  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annal For Sci 68:17–24

    Article  Google Scholar 

  • Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  PubMed  CAS  Google Scholar 

  • Deram A, Languereau-Leman F, Howsam M, Petit D, Van Haluwyn C (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): Influence of mycorrhizal and endophytic fungal colonisation. Soil Biol Biochem 40:845–848

    Article  CAS  Google Scholar 

  • Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trend Plant 4:45–51

    Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontiudium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078

    Article  Google Scholar 

  • Gams W, Verkley GJM, Crous PW (eds) (2007) CBS course of mycology. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes: application to the identification of mycorrhizae and rusts. Molec Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Giovanetti M (2008) Structure, extent and functional significance of below-ground arbuscular mycorrhizal networks. In: Varma A (ed) Mycorrhiza. Springer Verlag, Berlin, Heidelberg, New York, pp 59–72

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • Gonçalves SC, Martins-Loucao MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 52:352–354

    Article  Google Scholar 

  • Hoiland K (1995) Reaction of some decomposer basidiomycetes to toxic elements. Nordic J Bot 15:305–318

    Article  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang Y, Li T, Huang Z-J, Fei Y-H (2008) Ectomycorrhizal fungus-induced changes of Cu and Cd speciation in the rhizosphere of Chinese pine seedlings. Pedosphere 18:758–765

    Article  CAS  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark-septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kandeler E (1995) Organic matter by wet combustion. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 397–398

    Google Scholar 

  • Khastini RO, Ohta H, Narisawa K (2012) The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in fusarium disease suppression in Chinese cabbage. J Microbiol 50:618–624

    Article  PubMed  Google Scholar 

  • Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Kuzkovina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediat 6:269–287

    Article  Google Scholar 

  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Tot Environ 409:1069–1074

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Likar M, Regvar M (2009) Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Sci Total Environ 407:6179–6187

    Article  PubMed  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathol 59:153–163

    Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. Forest Sci 21:245–254

    Google Scholar 

  • Meharg AA, Cairney JWG (1999) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  Google Scholar 

  • Mühlmann O, Peintner U (2008) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180

    Article  PubMed  Google Scholar 

  • Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snow melt by the snow buttercup, Ranunculus adoneus. Arctic Alpine Res 30:121–125

    Article  Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  PubMed  CAS  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Nara K (2008) Community developmental patterns and ecological functions of ectomycorrhizal fungi: implications from primary succession. In: Varma A (ed), Mycorrhiza. Springer Verlag, Berlin, Heidelberg, New York, pp 581–599

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  PubMed  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Am Soc Agron, Soil Sci Soc AM, Madison, pp 403–430

    Google Scholar 

  • Pajević S, Borišev M, Nikolić N, Krstić B, Pilipović A, Orlović S (2009) Phytoremediation capacity of poplar (Populus spp.) and willow (Salix spp.) clones in relation to photosynthesis. Arch Biol Sci 61:239–247

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy-metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site—indications for the direction of photostabilisation? Environ Pollut 144:976–984

    Article  PubMed  CAS  Google Scholar 

  • Regvar M, Likar M, Piltaver A, Kogonič N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at a metal-polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356

    Article  CAS  Google Scholar 

  • Routsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonization in Deschampsia flexuosa: effects of pollution and neighbouring trees. Environ Pollut 147:723–728

    Article  Google Scholar 

  • Ruotsalainen AL (2003) Mycorrhizal colonization and plant performance in arcto-alpine conditions. Ph.D thesis, Department of Biology, University of Oulu, Oulu, Finland

  • Sander M-L, Ericsson T (1998) Vertical distribution of plant nutrients and heavy metals in Salix viminalis stems and their implications for sampling. Biomass Bioenerg 14:57–66

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Bañuelos G, Terry N (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 171–188

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M (2009) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal-polluted environments. Plant Soil 314:25–34

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molec Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molec Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure de taux de mycorhization VA dun systeme radiculaire. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Recherche de methodes destimation ayant une signification fonctionnelle. Mycorrhizae: physiology and genetic. INRA, Paris, pp 216–222

    Google Scholar 

  • Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293

    Article  PubMed  Google Scholar 

  • Unterbrunner R, Puschenreiter M, Simmer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW (2007) Heavy metal accumulation in trees growing on contaminated sites in central Europe. Environ Pol 148:107–114

    Article  CAS  Google Scholar 

  • van der Heijden EW, Kuyper TW (2001) Laboratory experiments imply the conditionality of mycorrhizal benefits for Salix repens: role of pH and nitrogen-to-phosphorus ratio. Plant Soil 228:275–290

    Article  Google Scholar 

  • van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics in interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841

    Article  Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR—protocols and applications—a laboratory manual. Academic, London, pp 315–322

    Google Scholar 

  • Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K (2007) Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol Res 162:219–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Likar.

Additional information

Responsible Editor: Thom W. Kuyper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likar, M., Regvar, M. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L.. Plant Soil 370, 593–604 (2013). https://doi.org/10.1007/s11104-013-1656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1656-6

Keywords

Navigation