Skip to main content
Log in

Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals In Vitro

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

To understand the possible role of the plant root associated fungi on metal tolerance, their role in the uptake of heavy metals and the potential transfer of these metal ions to the plant, three strains of dark septate endophytic (DSE) fungi were isolated from a waste smelter site in southwest China, and one strain was isolated from a non-contaminated site. According to molecular phylogenetic analysis of the ITS 1-5.8S rDNA-ITS 2 gene regions and morphological characteristics, one is identified as Exophiala pisciphila, and the other three are non-sporulating fungi under the experiment condition with the nearest phylogenetic affinities to the Thysanorea papuana strain EU041814. Tolerance and accumulation abilities of the three DSE strains for metals were investigated in liquid culture. Minimum inhibitory concentrations (MIC) of Pb, Zn, and Cd were determined. It was demonstrated that the tolerance of the DSE strains varied between metal species and strains. The E. pisciphila strain is able to accumulate lead and cadmium over 20% and 5% of dry weight of biomass, respectively. Partial of the sequestrated metals can be washed with CaCh. Morphological and enzyme activity changes taking place in the presence of excessive Pb, Cd, and/or Zn also indicate that the mechanism of heavy metal tolerance and accumulation of the DSE strains would be a complex process. The findings indicated promising tolerance and accumulation of the DSE strains with potential values in metal cycling and restoration of soil and water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy, H.D., M.M. Piercey, and R.S. Currah. 2005. Macrofungal endophytes in roots. Canadian J. Botany 83, 1–13.

    Article  Google Scholar 

  • Barrow, J.R. and R.E. Aaltonen. 2001. Evaluation of the internal colonization of Atriplexcanescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11, 199–205.

    Article  Google Scholar 

  • Bhanoori, M. and M. Venkateswerlu. 2000. In vivo chiti-cadmium complexation in cell wall of Neurospora crassa. Biochim. Biophys. Acta. 152, 21–28.

    Google Scholar 

  • Caldwell, B.A., M.A. Mastellano, and R.P. Griffiths. 1991. Fatty acid esterase production by ectomycorrhizal fungi. Mycorrhiza 33, 233–236.

    Google Scholar 

  • Cerbasi, I.H. and U. Yetis. 2001. Biosorption of Ni (ii) and Pb (ii) by Phanerochaete chrysosporium from binary metal system — Kinetics. Water Res. 27, 15–20.

    Google Scholar 

  • Cevnik, M., M. Jurc, and D. Vodnik. 2000. Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Zerjav lead smelter (Slovenia). Phyton. Ann. Rei. Bot. 40, 61–64.

    Google Scholar 

  • Choudhary, M., U.K. Jetley, M.A. Khan, S. Zutshi, and T. Fatma. 2007. Effect of heavy metal stress on proline, malondialde-hyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66, 204–209.

    Article  PubMed  CAS  Google Scholar 

  • Collin-Hansen, C., R.A. Andersen, and E. Steinnes. 2003. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. J. Phys. W 107, 311–314.

    CAS  Google Scholar 

  • Collin-Hansen, C., R.A. Adersen, and E. Steinnes. 2005. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia 97, 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Colpaert, J.V., P. Vandenkoornbuyse, K. Adriaensen, and J. Vangeonsveld. 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillusluteus. New Phytol. 147, 367–379.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytologist 124, 25–60.

    Article  CAS  Google Scholar 

  • Gadd, G.M. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Gadd, G.M. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweather-ing and bioremediation. Mycol Res. 111(Pt 1), 3–49.

    Article  PubMed  CAS  Google Scholar 

  • Gadd, G.M. and C. White. 1989. The removal of thorium from simulated acid process streams by fungal biomass. Biotechnol. Bioeng. 33, 592–597.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M.J. and M.P. Lechevalier. 1975. Effects of zinc-smelter emissions on forest soil microflora. Can. J. Microbiol. 21, 1855–1865.

    Article  PubMed  CAS  Google Scholar 

  • Jumpponen, A. and J.M. Trappe. 1998. Dark septate endophytes: a review of facultative biotrophic root colonizing fungi. New Phytologist 140, 295–310.

    Article  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Leyval, C., K. Turnau, and K. Haselwandter. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological, and applied aspects. Mycorrhiza 7, 139–153.

    Article  CAS  Google Scholar 

  • Lu, R.K. 2000. Methods of Soil and Agricultural Chemical Analysis. China Agricultural Scientech Press, Beijing, China.

    Google Scholar 

  • Mandyam, K. and A. Jumpponen. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies Mycol. 53, 173–189.

    Article  Google Scholar 

  • Martino, E., K. Turnau, M. Girlanda, P. Bonfante, and S. Perotto. 2000. Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycol. Res. 104, 338–344.

    Article  CAS  Google Scholar 

  • Massaccesi, G., M.C. Romero, M.C. Cazau, and A.M. Bucsinszky. 2002. Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J. Microbiol. Biotechnol. 18, 817–820.

    Article  CAS  Google Scholar 

  • McGonigle, T.P., M.H. Miller, D.G. Evans, G.L. Fairchild, and J.A. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501.

    Article  Google Scholar 

  • Rains, K.C., N.M. Nadkarni, and C.S. Bledsoe. 2003. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13, 257–264.

    Article  PubMed  Google Scholar 

  • Ruotsalainen, A.L., A. Markkola, and M.V. Kozlov. 2007. Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environ. Pollut. 47, 723–728.

    Article  CAS  Google Scholar 

  • Schützendübel, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365.

    Article  PubMed  Google Scholar 

  • SEPA (State environmental protection administration of China). 1997. Soil quality-Ddtermination of copper, zinc-Flame atomic absorption spectrophotometry. GB/T 17138.

  • Silvani, V.A., S. Fracchia, L. Fernández, M. Pérgola, and A. Godeas. 2008. A simple method to obtain endophytic micro-organisms from field-collected roots. Soil Biol. Biochem. 40, 1259–1263.

    Article  CAS  Google Scholar 

  • Smith, S.E. and D.J. Read. 1997. Mycorrhizal symbiosis, 2nd ed. Academic Press, London, UK.

    Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Trotter, E.W., E.J. Collinson, I.W. Dawes, and C.M. Grant. 2006. Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4885–4892.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, M. and G.M. Gadd. 1997. Fungi and industrial pollutants, p. 85–97. In D.T. Wicklow and B. Söderström (eds.), The Mycota IV. Environmental and Microbial Relationships Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315–322. In M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.), PCR protocols: a guide to methods and applications, Academic Press, San Diego, USA.

    Google Scholar 

  • Zafar, S., F. Aqil, and I. Ahmad. 2007. Metal tolerance and bio-sorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Biores. Technol. 98, 2557–2561.

    Article  CAS  Google Scholar 

  • Zapotoczny, S., A. Jurkiewicz, G. Tylko, T. Anielska, and K. Turnaud. 2007. Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol. Res. 162, 219–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, Y., Liu, M. et al. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals In Vitro . J Microbiol. 46, 624–632 (2008). https://doi.org/10.1007/s12275-008-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0163-6

Keywords

Navigation