Skip to main content

Advertisement

Log in

Large-scale Fabrication of Snake-skin-inspired Protective Composite Textiles

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Inspired by the overlapping structure of snake scales, a reinforced scale-like knitted fabric (R-SLKF) was created in this work. To achieve this, short carbon fibers in an epoxy resin (ER) matrix were incorporated into the scales of an SLKF. The resulting textile is a highly stable protective composite that is flexible, warm, and thermally insulated. In addition, superior stab-resistance is ensured through rigid protective blocks in the R-SLKF, making up a hard overlapping scale region, besides satisfactory flexibility via soft twisted ultra-high-molecular-weight polyethylene yarn-based textiles. The R-SLKF achieves high stab resistance (peak load of approximately 600 N for a single scale thickness of 2 mm), good flexibility (~ 290 mN cm), and breathability (100 MPa, 423 mm/s), coupled with good warmth retention and thermal insulation properties (0.28 ℃/s), which are superior to previously reported protective composite textiles. From the results, the combination of desirable individual protection, excellent wearability and comfort enables human beings to survive in extremely dangerous environments. Finite element simulations provided valuable insights into the factors influencing the stab resistance of R-SLKF and elucidated the underlying anti-puncture mechanism in accordance with the experimental findings. This study presents a novel strategy for the facile industrial fabrication of flexible and lightweight protective composite textiles, which is expected to enhance the structure and material design for future innovations and provide advantages for personal protective equipment in various industrial fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. Chai GB, Manikandan P. Low velocity impact response of fibre-metal laminates-a review. Compos Struct. 2014;107:363–81.

    Article  Google Scholar 

  2. Zhao ZN, Han B, Li FH, Zhang R, Su PB, Yang M, Zhang Q, Zhang QC, Lu TJ. Enhanced bi-layer mosaic armor: experiments and simulation. Ceram Int. 2020;15:23854–66.

    Article  Google Scholar 

  3. Ong CW, Boey CW, Hixson RS, Sinibaldi JO. Advanced layered personnel armor. Int J Impact Eng. 2011;5:369–83.

    Article  Google Scholar 

  4. Zhang BW, Wang YW, Du SF, Yang ZK, Cheng HW, Fan QB. Influence of backing plate support conditions on armor ceramic protection efficiency. Materials. 2020;15:3427.

    Article  Google Scholar 

  5. Rodriguez MM, Diaz AA, Aranda RJ, Diaz AJ, Loya JA. Experimental analysis for stabbing resistance of different aramid composite architectures. Compos Struct. 2019;208:525–34.

    Article  Google Scholar 

  6. Li W, Xiong DS, Zhao XD, Sun LL, Liu J. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Mater Design. 2016;102:162–7.

    Article  Google Scholar 

  7. Chukov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev W, Kaloshkin SD, Kuskov KV, Bugakov VI. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos Part B. 2015;76:79–88.

    Article  CAS  Google Scholar 

  8. Guo YX, Yuan MQ, Qian XM, Wei YC, Liu Y. Rapid prediction of polymer stab-resistance performance. Mater Design. 2020;192:108721.

    Article  CAS  Google Scholar 

  9. Zhang CH, Rawatn P, Liu P, Zhu DJ. A new design and performance optimization of bio-inspired flexible protective equipment. Bioinspir Biomim. 2020;6:066003.

    Article  Google Scholar 

  10. Prashant P, Zhu DJ, Barthelat F. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: a review. Acta Biomater. 2021;1231:41–67.

    Google Scholar 

  11. Johnson AA, Bingham GA, Majewski CE. The design and assessment of bio-inspired additive manufactured stab-resistant armour. Virtual Phys Prototy. 2018;13:49–57.

    Article  Google Scholar 

  12. Arrigo MI, Vilaca LMD, Fofonjka A, Srikanthan AN, Debry A, Milinkovitch MC. Phylogenetic mapping of scale nanostructure diversity in snakes. BMC Ecol Evol. 2019;19:91.

    Google Scholar 

  13. Chango AH, Vela PA. Evaluation of bio-Inspired scales on locomotion performance of snake-like robots. Robotica. 2019;8:1302–19.

    Article  Google Scholar 

  14. Fu SH, Wei FN, Yin C, Yao LG, Wang YX. Biomimetic soft micro-swimmers: from actuation mechanisms to applications. Biomed Microdevices. 2021;1:6.

    Article  Google Scholar 

  15. Zheng L, Zhong YH, Gao YH, Li JY, Zhang ZH, Liu ZN, Ren LQ. Coupling effect of morphology and mechanical properties contributes to the tribological behaviors of snake scales. J Bionic Eng. 2018;3:481–93.

    Article  Google Scholar 

  16. Liu C, Chen YT, Zheng YH, Bo J, Yang CJ, Xu S, Zhang S. Wear resistance improvement of keeled structure and overlapped distribution of snake scales. J Bionic Eng. 2023;20:1121–31.

    Article  Google Scholar 

  17. Gong Z, Qian XM, Yuan MQ. Structural design of a 3D printed stab resistant body armor. Rapid Prototyp J. 2019;1:143–51.

    Article  Google Scholar 

  18. Xu JX, Fu CY, Fu QQ, Chen Y, Ma YJ, Feng X. Flexible arc-armor inspired by origami. Int J Mech Sci. 2021;201:106463.

    Article  Google Scholar 

  19. Guo YX, Yuan MQ, Qian XM. Bionic stab-resistant body armor based on triangular pyramid structure. Def Technol. 2021;3:792–9.

    Article  Google Scholar 

  20. Li CS, Huang XC, Li Y, Yang NC, Shen ZH, Fan XH. Stab-resistance of UHMWPE fiber composites impregnated with thermoplastics. Polym Advan Technol. 2014;9:1014–9.

    Article  Google Scholar 

  21. Zhang XY, Li TT, Sun F, Peng HK, Wang ZK, Lin JH, Lou CW. Stab/puncture resistance performance of needle punched nonwoven fabrics: effects of filament reinforcement and thermal bonding. Fiber Polym. 2022;8:2330–9.

    Article  Google Scholar 

  22. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  CAS  PubMed  Google Scholar 

  23. Chen ML, Hu N, Zhou C, Lin XK, Xie H, He Q. The hierarchical structure and mechanical performance of a natural nanocomposite material: the turtle shell. Colloid Surface A. 2017;520:97–104.

    Article  CAS  Google Scholar 

  24. Browning A, Ortiz C, Boyce MC. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. J Mech Behav Biomed. 2013;19:75–86.

    Article  CAS  Google Scholar 

  25. Rudykh S, Ortiz C, Boyce MC. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter. 2015;11:2547–54.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh R, Ebrahimi H, Vaziri A. Contact kinematics of biomimetic scales. Appl Phys Lett. 2014;105:233701.

    Article  Google Scholar 

  27. Shen DH, Zhang Q, Wang CJ, Wang XS, Tian MQ. Design and analysis of a snake-inspired crawling robot driven by alterable angle scales. IEEE Robot Autom Let. 2021;6:3744–51.

    Article  Google Scholar 

  28. Mao LZ, Zhou MJ, Yao L, Yu H, Yan XF, Shen Y, Chen WS, Ma PB, Ma Y, Zhang SL, Tan SC. Crocodile skin-inspired protective composite textiles with pattern-controllable soft-rigid unified structures. Adv Funct Mater. 2023;33:2213419.

    Article  CAS  Google Scholar 

  29. Duro-Royo J, Zolotovsky K, Mogas-Soldevila L, Varshney S, Oxman N, Boyce MC, Ortiz C. MetaMesh: a hierarchical computational model for design and fabrication of biomimetic armored surfaces. Comput Aided Design. 2015;60:14–27.

    Article  Google Scholar 

  30. Funk N, Vera M, Szewciw LJ, Barthelat F, Stoykovich MP, Vernerey FJ. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials. ACS Appl Mater Interfaces. 2015;10:5972–83.

    Article  Google Scholar 

  31. Celik SB, Cobanoglu I. Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environ Earth Sci. 2019;78:554.

    Article  Google Scholar 

  32. Lu J, Zhang Y, Tao Y, Wang B, Cheng W, Jie G, Song L, Hu Y. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance. J Colloid Interf Sci. 2021;588:164–74.

    Article  CAS  Google Scholar 

  33. Jia PF, Zhu YL, Lu JY, Wang BY, Song L, Wang BB, Hu Y. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance. Chem Eng J. 2022;439:135673.

    Article  CAS  Google Scholar 

  34. Jia PF, Yu FH, Tao YJ, Sun PF, Xing WY, Jie GX, Hu Y, Wang BB. Multifunctional additive: a novel regulate strategy for improving mechanical property, aging life and fire safety of EVA composites. Chem Eng J. 2023;473:145283.

    Article  CAS  Google Scholar 

  35. Yin ZT, Lu JY, Hong NN, Cheng WH, Jia PF, Wang HJ, Hu WZ, Wang BB, Song L, Hu Y. Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J Colloid Interf Sci. 2022;607:1300–12.

    Article  CAS  Google Scholar 

  36. Reddy KN, Gangadharan R, Ramji M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade stiffened CFRP panels. Compos Struct. 2018;196:135–54.

    Article  Google Scholar 

  37. Li W, Xiong DS, Liu J. Dynamic stab-resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Mater Design. 2016;102:162–7.

    Article  Google Scholar 

  38. Xia MM, Quan ZZ, Wang XL, Yu JY. Preparation and characterization of B4C particle coated composites for stab-resistance. Compos Struct. 2019;228:111370.

    Article  Google Scholar 

  39. Yan BB, Zhou M, Yu YY, Xu B, Cui L, Wang Q, Wang P. Orderly self-stacking a high-stability coating of MXene@Polydopamine hybrid onto textiles for multifunctional personal thermal management. Compos Part A. 2022;160:107038.

    Article  CAS  Google Scholar 

  40. Zhu DJ, Szewciw L, Vernerey F, Brathelat F. Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs. Sciverse Sci Direct. 2013;24:30–40.

    Google Scholar 

  41. Sherman VR, Quan HC, Yang W, Ritchie RO, Meyers MA. A comparative study of piscine defense: the scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. J Mech Behav Biomed. 2017;73:1–16.

    Article  Google Scholar 

  42. Yang W, Naleway SE, Porter MM, Meyers MA, Mckittrick J. The armored carapace of the boxfish. Acta Biomater. 2015;23:1–10.

    Article  PubMed  Google Scholar 

  43. Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural flexible dermal armor. Adv Mater. 2013;25:31–48.

    Article  PubMed  Google Scholar 

  44. Zhao HY, Qiang YQ, Peng HK, Xing MF, Zhang XY, Lou CW. Enhancement of a novel sizing agent in mechanical properties and Stab/Puncture resistance of Kevlar fabrics. Fiber Polym. 2021;12:1–8.

    Google Scholar 

  45. Zhang XY, Li TT, Peng HK, Lou CW, Lin JH. Enhanced sandwich structure composite with shear thickening fluid and thermoplastic polyurethanes for High-performance stab resistance. Compos Struct. 2022;280:114930.

    Article  CAS  Google Scholar 

  46. Liu Q, Sun YX, Zhao JZ, Ma PB. Failure mechanism of weft-knitted insertion fabric/Surlyn resin flexible composite for stab-resistance. Text Res J. 2023;93:2473–89.

    Article  CAS  Google Scholar 

  47. Lin TR, Lin TA, Lin MC, Lin YY, Lou CW, Lin JH. Impact resistance of fiber reinforced sandwich-structured nonwoven composites: reinforcing effect of different fiber length. Mater Today Commun. 2020;24:101345.

    Article  CAS  Google Scholar 

  48. Miao XH, Kong XY, Jiang GM. The experimental research on the stab resistance of warp-knitted spacer fabric. J Ind Text. 2013;43:281–301.

    Article  Google Scholar 

  49. Martini R, Barthelat F. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales. Bioinspir Biomim. 2016;11:066001.

    Article  PubMed  Google Scholar 

  50. Martini R, Balit Y, Barthela F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomater. 2017;55:360–72.

    Article  CAS  PubMed  Google Scholar 

  51. Martini R, Barthelat F. Stability of hard plates on soft substrates and application to the design of bioinspired segmented armor. J Mech Phys Solids. 2016;92:195–209.

    Article  Google Scholar 

  52. Chintapalli RK, Mirkhalaf M, Dastjerdi AK, Barthelat F. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspir Biomim. 2014;3:036005.

    Article  Google Scholar 

  53. Liu Q, Wang LL, Luo M, Wu Q, Kang Y, Ma PB. Stab-resistance of flexible composite reinforced with warp-knitted fabric like scale structure at quasi-static loading. J Ind Text. 2022;51:7983S-7998S.

    Article  Google Scholar 

  54. Yan BB, Bao XM, Liao XT, Wang P, Zhou M, Yu YY, Yuan JG, Cui L, Wang Q. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC. ACS Appl Mater Inter. 2022;1:2132–45.

    Article  Google Scholar 

  55. Delavari K, Dabiryan H. Mathematical and numerical simulation of geometry and mechanical behavior of sandwich composites reinforced with 1×1-Rib-Gaiting weft-knitted spacer fabric; compressional behavior. Compos Struct. 2021;268:113952.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Funds of China (52373085 and 11972172), Natural Science Foundation of Hubei Province (2023AFB828), Innovative Team Program of Natural Science Foundation of Hubei Province (2023AFA027), the Fundamental Research Funds for the Central Universities (JUSRP22026), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAP), Open Fund for Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University (No. DTL 2023022) and National Local Joint Laboratory for Advanced Textile Processing and Clean Production (17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengxiang Chen, Zhijia Dong or Pibo Ma.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17363 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Chen, F., Dong, T. et al. Large-scale Fabrication of Snake-skin-inspired Protective Composite Textiles. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00396-7

Keywords

Navigation