Skip to main content

Advertisement

Log in

Progress in Electrospun Fibers for Manipulating Cell Behaviors

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The manipulation of cell behaviors is essential to maintaining cell functions, which plays a critical role in repairing and regenerating damaged tissue. To this end, a rich variety of tissue-engineered scaffolds have been designed and fabricated to serve as matrix for supporting cell growth and functionalization. Among others, scaffolds made of electrospun fibers showed great potential in regulating cell behaviors, mainly owing to their capability of replicating the dimension, composition, and function of the natural extracellular matrix. In particular, electrospun fibers provided both topological cues and biofunctions simply by adjusting the electrospinning parameters and/or post-treatment. In this review, we summarized the most recent applications and advances in electrospun nanofibers for manipulating cell behaviors. First, the engineering of the secondary structures of individual fibers and the construction of two-dimensional nanofiber mats and nanofiber-based, three-dimensional scaffolds were introduced. Then, the functionalization strategies, such as endowing the fibers with bioactive, physical, and chemical cues, were explored. Finally, the typical applications of electrospun fibers in controlling cell behaviors (i.e., cell adhesion and proliferation, infiltration, migration, neurite outgrowth, stem cell differentiation, and cancer cell capture and killing) were demonstrated. Taken together, this review will provide valuable information to the specific design of nanofiber-based scaffolds and extend their use in controlling cell behaviors for the purpose of tissue repair and regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref [49], Copyright 2008, Elsevier. C Scanning electron microscopy (SEM) images showing the morphology of PS fibers electrospun at the concentration of 15% with (i) dichloromethane, (ii) tetrahydrofuran, (iii) N,N-dimethylformamide, and (iv) cyclohexanone as the solvent, respectively. The insert in (iii) shows the PS fibers with a rough surface. Reproduced with permission from ref [53], Copyright 2015, Springer Nature. D The preparation process of core–shell or island-shaped PLA/CS nanofibers. SEM images showing the generation of CS islands on PLA fibers at 35 °C, 50 °C, and 60 °C. Reproduced with permission from ref [35], Copyright 2017, American Chemical Society. E Illustration of three possible mechanisms for generating the grooves on fibers

Fig. 3

Reproduced with permission from ref [41], Copyright 2021, MDPI. B Schematic illustration showing the influence of nanofiber-based mesh on the growth behavior of cells. C SEM images and diameter distribution of electrospun microfibers from PS with tetrahydrofuran as the solvent at different concentrations of 20.0 wt%, 22.5 wt%, and 25.0 wt%, respectively. Reproduced with permission from ref [70], Copyright 2020, MDPI. D Schematic illustration of circular and linear gradients of bioactive factors or electrosprayed nano-/microparticles on uniaxially and radially aligned fibers, respectively

Fig. 4

Reproduced with permission from ref [97], Copyright 2018, Elsevier. D Schematic illustration of the typical process of aerogel preparation. Reproduced with permission from ref [108], Copyright 2019, Royal Society. E 3D printing of inks containing short fibers: (i) SEM image of electrospun gelatin/ PLGA fibers; (ii) photograph of the powder of fibers; (iii) photograph showing the injectability of the fiber-contained inks; (iv) photograph showing the 3D-printed scaffolds. Reproduced with permission from ref [115], Copyright 2019, Elsevier

Fig. 5

Reproduced with permission from ref [128], Copyright 2020, Elsevier. B Schematic illustration showing the fabrication of electrospun SF/PCL nanofibers followed by incubation with ECM. The as-obtained membrane was named NaRE. (i) SEM image of the NaRE membrane. (ii) Magnified SEM image of the region labeled by the white box in (i). Red and yellow arrows indicate SF/PCL nanofibers and ECM, respectively. (iii) SEM image of the cross section of the NaRE membrane. Reproduced with permission from ref [133], Copyright 2022, IOP Publishing. C Schematic diagram of the preparation of the PCL/polypeptide nanofibers and their use for antibacterial therapy against Escherichia coli and Staphylococcus aureus. Reproduced with permission from ref [131], Copyright 2018, Elsevier. D SEM images showing the morphology of nanofibers with graded coating of mineral contents aligned the aligned-to-random fibers. E The corresponding fluorescent microphotographs showing the morphologies of TDSCs cultured on the different regions of nanofibers. Reproduced with permission from ref [143], Copyright 2022, Springer Nature

Fig. 6

Reproduced with permission from ref [150], Copyright 2018, Elsevier. C (i) Schematic illustration showing the cell culture device with electrical stimulation. The edges of nanofiber scaffolds were attached to steel rings, and electrical stimulation of 10, 50, or 100 mV was applied for 3 or 6 h using an electrochemical device. (ii) Fluorescent micrograph showing the axonal extension of PC12 cells after culturing on the SF scaffolds, Reproduced with permission [151], Copyright 2019, Elsevier. D Photographs, SEM, and atomic force microscopy images (the insets) showing the PPy-coated PLCL/SF nanofibers with increased PPy contents from (i) to (iv). Reproduced with permission from ref [153], Copyright 2016, Royal Society of Chemistry

Fig. 7

Reproduced with permission from ref [156], Copyright 2019, Elsevier. C (i, ii) Piezoelectric characterizations: (i) The displacement amplitude; (ii) Piezoresponse force microscopy results. Reproduced with permission from ref [161], Copyright 2017, Elsevier. D Tensile stress of the Ag-HAp@PCL nanofiber scaffolds with different Ag+ concentrations. E SEM images showing the HFB4 cells attached to the Ag-HAp@PCL nanofibers with different Ag+ concentrations at 3 days post cell culture. Reproduced with permission from ref [2], Copyright 2021, Elsevier

Fig. 8
Fig. 9
Fig. 10

Reproduced with permission from ref [165], Copyright 2019, Elsevier. B (i) Fluorescent micrographs and (ii) SEM images showing the growth of ECs on the HA/PLA and PLA microfibers, respectively, after 72-h seeding. The control group in (i) refers to the cell culture plate. (iii) The proliferation of ECs after culturing on the HA/PLA and PLA microfibers and TCP for 1, 3, and 5 days. Reproduced with permission from ref [175], Copyright 2021, Elsevier

Fig. 11

Reproduced with permission from ref [185], Copyright 2021, Elsevier

Fig. 12

Reproduced with permission from ref [192], Copyright 2022, IOP Publishing. C The migration of fibroblasts after culturing on the radially aligned PCL nanofibers coated with a density gradient of or uniform collagen nanoparticles and the blank nanofibers for 3 days: (i) fluorescent micrographs; (ii) cell numbers in the different migration zones; (iii) the migration distance. Reproduced with permission from ref [194], Copyright 2022, Wiley

Fig. 13

Reproduced with permission from ref [37], Copyright 2020, Wiley. D (i) Schematic illustration indicating the neurite outgrowth from PC12 cells after culturing on the tri-layered NGCs consisting of two layers of PCL nanofibers as the top and bottom layer, NGF@PCM microparticles sandwiched between two layers as a middle layer. When an 808-nm NIR laser irradiated the construct, NGF could be released from the sandwiched PCM particles. (ii, iii) Fluorescent micrographs of the typical neurite fields extending from the spheroids of PC12 cells after culturing on the NGCs for 7 days with the (ii) absence or (iii) presence of laser irradiation. Reproduced with permission from ref [140], Copyright 2018, Wiley

Fig. 14

Reproduced with permission from ref [198], Copyright 2016, American Chemical Society. C (i-vi at top panels) SEM images showing the morphological gradient of core–shell polyethylene glycol@PCL microfibrous scaffolds with various hollow core dimensions; (i-vi at bottom panels) Typical histology micrographs showing the osteogenic (alizarin red staining) and chondrogenic (alcian blue staining) differentiation of MSCs after culturing on the gradient scaffolds for 49 days. Reproduced with permission from ref [199], Copyright 2019, American Chemical Society. D Schematic illustration showing the PLGA nanofibers incorporated with GO and statistical analysis of osteocalcin secretion after culturing MSCs for 14 and 28 days with or without adding dexamethasone in the culture medium. PLGA was electrospun at a concentration of 15% or 18%, and GO was added at the same concentration of 1%. Reproduced with permission from ref [200], Copyright 2015, American Chemical Society. E SEM images of the nanofibers made of a blend of PLGA, collagen, and HAp with random, aligned, and latticed features. The corresponding micro-computed tomography images showing the 3D reconstruction of rat calvarias after implanting the different scaffolds into calvarial bone defects for 6 weeks. Red dotted circles indicate the defect areas. Reproduced with permission from ref [201], Copyright 2021, Elsevier

Fig. 15

Reproduced with permission from ref [202], Copyright 2018, John Wiley and Sons. B Kaplan–Meier curve showing freedom from local recurrence when treating lung cancer using cisplatin-loaded nanofiber mats and control groups (implantation of nanofibers unloaded with drugs plus intraperitoneal cisplatin, intraperitoneal cisplatin, and implantation of nanofibers unloaded with dugs plus intraperitoneal saline). Reproduced with permission from ref [203], Copyright 2016, Elsevier. C Photographs showing the tumor sites (i) before treatment, (ii) during treatment using the PCL/Fe3O4 nanofiber bandage by sticking it on the surface of a surgical dressing under the induction coils, and treated by (iii) five doses of hyperthermic cycles and every cycle lasting for 15 min; (iv) The recovery at 2 weeks post treatment. Reproduced with permission from ref [204], Copyright 2020, Wiley. D Schematic illustration of streptavidin-grafted PLGA nanofibers to isolate and capture the circulating tumor cells

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8:169.

    CAS  Google Scholar 

  2. Hassan AA, Radwan HA, Abdelaal SA, Al-Radadi NS, Ahmed MK, Shoueir KR, Hady MA. Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity. Int J Pharm. 2021;593: 120143.

    CAS  Google Scholar 

  3. Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117:4376.

    CAS  Google Scholar 

  4. Rognoni E, Pisco AO, Hiratsuka T, Sipilä KH, Belmonte JM, Mobasseri SA, Philippeos C, Dilão R, Watt FM. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol Syst Biol. 2018;14: e8174.

    Google Scholar 

  5. Rice CM, Scolding NJ. Autologous bone marrow stem cells–properties and advantages. J Neurol Sci. 2008;265:59.

    CAS  Google Scholar 

  6. Qu J, Zhou D, Xu X, Zhang F, He L, Ye R, Zhu Z, Zuo B, Zhang H. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells. Appl Surf Sci. 2012;261:320.

    CAS  Google Scholar 

  7. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 2007;25:2896.

    Google Scholar 

  8. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials. 2010;31:7012.

    CAS  Google Scholar 

  9. Rai R, Raval R, Khandeparker RV, Chidrawar SK, Khan AA, Ganpat MS. Tissue engineering: step ahead in maxillofacial reconstruction. J Int Oral Health. 2015;7:138.

    Google Scholar 

  10. Borrelli MR, Hu MS, Longaker MT, Lorenz HP. Tissue engineering and regenerative medicine in craniofacial reconstruction and facial aesthetics. J Craniofac Surg. 2020;31:15.

    Google Scholar 

  11. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920.

    CAS  Google Scholar 

  12. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9:323.

    Google Scholar 

  13. Matson JB, Zha RH, Stupp SI. Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci. 2011;15:225.

    CAS  Google Scholar 

  14. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622.

    CAS  Google Scholar 

  15. Wade RJ, Burdick JA. Engineering ECM signals into biomaterials. Mater Today. 2012;15:454.

    CAS  Google Scholar 

  16. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater. 2020;2:212.

    CAS  Google Scholar 

  17. Lei F, Liang M, Liu Y, Huang H, Li H, Dong H. Multi-compartment organ-on-a-chip based on electrospun nanofiber membrane as in vitro jaundice disease model. Adv Fiber Mater. 2021;3:383.

    CAS  Google Scholar 

  18. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl. 2007;46:5670.

    CAS  Google Scholar 

  19. Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2017;114:121.

    CAS  Google Scholar 

  20. Hong J, Yeo M, Yang GH, Kim G. Cell-electrospinning and its application for tissue engineering. Int J Mol Sci. 2019;20:6208.

    CAS  Google Scholar 

  21. Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically conductive materials opportunities and challenges in tissue engineering. Biomolecules. 2019;9:448.

    CAS  Google Scholar 

  22. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.

    CAS  Google Scholar 

  23. Zarrintaj P, Urbanska AM, Gholizadeh SS, Goodarzi V, Saeb MR, Mozafari M. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. J Colloid Interface Sci. 2018;516:57.

    CAS  Google Scholar 

  24. Bagheri B, Zarrintaj P, Surwase SS, Baheiraei N, Saeb MR, Mozafari M, Kim YC, Park OO. Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids Surf B Biointerfaces. 2019;184: 110549.

    CAS  Google Scholar 

  25. Manouchehri S, Bagheri B, Rad SH, Nezhad MN, Kim YC, Park OO, Farokhi M, Jouyandeh M, Ganjali MR, Yazdi MK, Zarrintaj P, Saeb MR. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog Org Coat. 2019;131:389.

    CAS  Google Scholar 

  26. Bagheri B, Zarrintaj P, Samadi A, Zarrintaj R, Ganjali MR, Saeb MR, Mozafari M, Park OO, Kim YC. Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol. Int J Biol Macromol. 2020;147:160.

    CAS  Google Scholar 

  27. Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Soufi Zomorrod M, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2019;104: 109921.

    CAS  Google Scholar 

  28. Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters. Polymers (Basel). 2022;14:3719.

    CAS  Google Scholar 

  29. Madruga LYC, Kipper MJ. Expanding the repertoire of electrospinning: new and emerging biopolymers, techniques, and applications. Adv Healthc Mater. 2022;11: e2101979.

    Google Scholar 

  30. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    CAS  Google Scholar 

  31. He P, Zhong Q, Ge Y, Guo Z, Tian J, Zhou Y, Ding S, Li H, Zhou C. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater Sci Eng C Mater Biol Appl. 2018;90:549.

    CAS  Google Scholar 

  32. Ranjan VD, Zeng P, Li B, Zhang Y. In vitro cell culture in hollow microfibers with porous structures. Biomater Sci. 2020;8:2175.

    CAS  Google Scholar 

  33. Guo X, Wang X, Li X, Jiang YC, Han S, Ma L, Guo H, Wang Z, Li Q. Endothelial cell migration on poly(epsilon-caprolactone) nanofibers coated with a nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromol. 2020;21:1202.

    CAS  Google Scholar 

  34. Jing X, Mi H-Y, Wang X-C, Peng X-F, Turng L-S. Shish-kebab-structured poly(ε-Caprolactone) nanofibers hierarchically decorated with chitosan–poly(ε-Caprolactone) copolymers for bone tissue engineering. ACS Appl Mater. 2015;7:6955.

    CAS  Google Scholar 

  35. Xu T, Yang H, Yang D, Yu ZZ. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9:21094.

    CAS  Google Scholar 

  36. Moffa M, Sciancalepore AG, Passione LG, Pisignano D. Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns. Small. 2014;10:2439.

    CAS  Google Scholar 

  37. Wu T, Xue J, Xia Y. Engraving the surface of electrospun microfibers with nanoscale grooves promotes the outgrowth of neurites and the migration of Schwann cells. Angew Chem Int Ed Engl. 2020;59:15626.

    CAS  Google Scholar 

  38. Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4:1611.

    CAS  Google Scholar 

  39. Leong MF, Rasheed MZ, Lim TC, Chian KS. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D, L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A. 2009;91:231.

    Google Scholar 

  40. Aghajanpoor M, Hashemi-Najafabadi S, Baghaban-Eslaminejad M, Bagheri F, Mohammad Mousavi S, Azam SF. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J Biomed Mater Res A. 1887;2017:105.

    Google Scholar 

  41. Norzain NA, Yu ZW, Lin WC, Su HH. Micropatterned fibrous scaffold produced by using template-assisted electrospinning technique for wound healing application. Polymers (Basel). 2021;13:424–31.

    Google Scholar 

  42. Kim JH, Jang J, Jeong YH, Ko TJ, Cho DW. Fabrication of a nanofibrous mat with a human skin pattern. Langmuir. 2015;31:424.

    CAS  Google Scholar 

  43. He FL, Li DW, He J, Liu YY, Ahmad F, Liu YL, Deng X, Ye YJ, Yin DC. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater Sci Eng C Mater Biol Appl. 2018;86:18.

    CAS  Google Scholar 

  44. Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008;4:1198.

    CAS  Google Scholar 

  45. Chen Y, Jia Z, Shafiq M, Xie X, Xiao X, Castro R, Rodrigues J, Wu J, Zhou G, Mo X. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids Surf B Biointerfaces. 2021;201: 111637.

    CAS  Google Scholar 

  46. Niu Z, Wang X, Meng X, Guo X, Jiang Y, Xu Y, Li Q, Shen C. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering. Biomed Mater. 2019;14: 035006.

    CAS  Google Scholar 

  47. Wu T, Li D, Wang Y, Sun B, Li D, Morsi Y, El-Hamshary H, Al-Deyab SS, Mo X. Laminin-coated nerve guidance conduits based on poly(l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. J Mater Chem B. 2017;5:3186.

    CAS  Google Scholar 

  48. Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv Healthc Mater. 2018;7: e1701415.

    Google Scholar 

  49. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 1989;2008:29.

    Google Scholar 

  50. Kim J. Hollow TiO(2)/Poly (Vinyl Pyrrolidone) fibers obtained via coaxial electrospinning as easy-to-handle photocatalysts for effective nitrogen oxide removal. Polymers (Basel). 2022;14:4942.

    CAS  Google Scholar 

  51. Barroso-Solares S, Cuadra-Rodriguez D, Rodriguez-Mendez ML, Rodriguez-Perez MA, Pinto J. A new generation of hollow polymeric microfibers produced by gas dissolution foaming. J Mater Chem B. 2020;8:8820.

    CAS  Google Scholar 

  52. Wang L, Topham PD, Mykhaylyk OO, Yu H, Ryan AJ, Fairclough JP, Bras W. Self-assembly-driven electrospinning: the transition from fibers to intact beaded morphologies. Macromol Rapid Commun. 2015;36:1437.

    Google Scholar 

  53. Liu W, Huang C, Jin X. Electrospinning of grooved polystyrene fibers: effect of solvent systems. Nanoscale Res Lett. 2015;10:949.

    Google Scholar 

  54. Wang X, Salick MR, Wang X, Cordie T, Han W, Peng Y, Li Q, Turng LS. Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromol. 2013;14:3557.

    CAS  Google Scholar 

  55. Wang H, Ma X, Li Y, Jiang S, Zhai L, Jiang S, Li X. Synthesis, antimicrobial and release of chloroamphenicol loaded poly(L-lactic acid)/ZrO2 nanofibrous membranes. Int J Biol Macromol. 2013;62:494.

    CAS  Google Scholar 

  56. Koombhongse S, Liu W, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci, Part B: Polym Phys. 2001;39:2598.

    CAS  Google Scholar 

  57. Topuz F, Uyar T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Mater Sci Eng C Mater Biol Appl. 2017;80:371.

    CAS  Google Scholar 

  58. Nguyen TT, Ghosh C, Hwang SG, Chanunpanich N, Park JS. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm. 2012;439:296.

    CAS  Google Scholar 

  59. Schwartz MA, Horwitz AR. Integrating adhesion, protrusion, and contraction during cell migration. Cell. 2006;125:1223.

    CAS  Google Scholar 

  60. Zhang M, Lidder J, Bahri M, Zhang H. Preparation of PLGA-coated porous silica nanofibers for drug release. Pharmaceutics. 2022;14:2660.

    CAS  Google Scholar 

  61. Poyraz S, Altinisik Z, Cakmak AS, Simsek M, Gumusderelioglu M. Random/aligned electrospun PCL fibrous matrices with modified surface textures: characterization and interactions with dermal fibroblasts and keratinocytes. Colloids Surf B Biointerfaces. 2022;218: 112724.

    CAS  Google Scholar 

  62. Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;92:995.

    CAS  Google Scholar 

  63. Lins LC, Wianny F, Livi S, Dehay C, Duchet-Rumeau J, Gerard JF. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation. J Biomed Mater Res B Appl Biomater. 2017;105:2376.

    CAS  Google Scholar 

  64. Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater. 2012;1:10.

    CAS  Google Scholar 

  65. Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials. 2017;141:74.

    CAS  Google Scholar 

  66. Liu N, Zhou Z, Ning X, Zhang X, Guo Q, Guo M, Wang Y, Wu T. Enhancing the paracrine effects of adipose stem cells using nanofiber-based meshes prepared by light-welding for accelerating wound healing. Mater Des. 2023;225:111582.

    CAS  Google Scholar 

  67. Kong L, Ziegler GR. Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr Polym. 2013;92:1416.

    CAS  Google Scholar 

  68. Mazoochi T, Hamadanian M, Ahmadi M, Jabbari V. Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. Int J Ind Chem. 2012;3:1–8.

    Google Scholar 

  69. Tong HW, Wang M. Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study. Biomed Mater. 2010;5: 054110.

    Google Scholar 

  70. Merchiers J, Meurs W, Deferme W, Peeters R, Buntinx M, Reddy NK. Influence of polymer concentration and nozzle material on centrifugal fiber spinning. Polymers (Basel). 2020;12:575.

    CAS  Google Scholar 

  71. Drexler JW, Powell HM. Regulation of electrospun scaffold stiffness via coaxial core diameter. Acta Biomater. 2011;7:1133.

    CAS  Google Scholar 

  72. Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev. 2011;17:365.

    CAS  Google Scholar 

  73. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348.

    CAS  Google Scholar 

  74. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583.

    CAS  Google Scholar 

  75. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 2011;7:1441.

    CAS  Google Scholar 

  76. Xue J, Wu T, Qiu J, Rutledge S, Tanes ML, Xia Y. Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular particles in a density gradient. Adv Funct Mater. 2020;30:2002031.

    CAS  Google Scholar 

  77. Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28:1664.

    CAS  Google Scholar 

  78. Ishii T, Saito H, Komizu Y, Tomoshige R, Matsushita T. Effects of macroporous hydroxyapatite carriers on the growth and function of human hepatoblasts derived from fetal hepatocytes. J Biosci Bioeng. 2016;122:240.

    CAS  Google Scholar 

  79. Han Y, Lian M, Wu Q, Qiao Z, Sun B, Dai K. Effect of pore size on cell behavior using melt electrowritten scaffolds. Front Bioeng Biotechnol. 2021;9: 629270.

    Google Scholar 

  80. Ai C, Liu L, Goh JC. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Mater Sci Eng C Mater Biol Appl. 2021;124: 112088.

    CAS  Google Scholar 

  81. Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater. 2010;6:3021.

    CAS  Google Scholar 

  82. Fu J, Wiraja C, Muhammad HB, Xu C, Wang DA. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation. Acta Biomater. 2017;58:225.

    CAS  Google Scholar 

  83. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A. 1989;86:933.

    CAS  Google Scholar 

  84. Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. J Tissue Eng Regen Med. 2012;6:155.

    CAS  Google Scholar 

  85. Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater. 2005;2014:10.

    Google Scholar 

  86. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670.

    CAS  Google Scholar 

  87. Danielsson C, Ruault S, Simonet M, Neuenschwander P, Frey P. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials. 2006;27:1410.

    CAS  Google Scholar 

  88. Oh SH, Kim TH, Im GI, Lee JH. Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromol. 1948;2010:11.

    Google Scholar 

  89. Pamula E, Bacakova L, Filova E, Buczynska J, Dobrzynski P, Noskova L, Grausova L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci Mater Med. 2008;19:425.

    CAS  Google Scholar 

  90. Taqvi S, Roy K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials. 2006;27:6024.

    CAS  Google Scholar 

  91. Gonnerman EA, Kelkhoff DO, McGregor LM, Harley BA. The promotion of HL-1 cardiomyocyte beating using anisotropic collagen-GAG scaffolds. Biomaterials. 2012;33:8812.

    CAS  Google Scholar 

  92. Kim HY, Kim HN, Lee SJ, Song JE, Kwon SY, Chung JW, Lee D, Khang G. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. J Tissue Eng Regen Med. 2017;11:44.

    CAS  Google Scholar 

  93. Collart-Dutilleul PY, Secret E, Panayotov I, Deville de Periere D, Martin-Palma RJ, Torres-Costa V, Martin M, Gergely C, Durand JO, Cunin F, Cuisinier FJ. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS Appl Mater Interfaces. 2014, 6, 1719.

  94. Li Q, Li L, Yu M, Zheng M, Li Y, Yang J, Dai M, Zhong L, Sun L, Lu D. Elastomeric polyurethane porous film functionalized with gastrodin for peripheral nerve regeneration. J Biomed Mater Res A. 2020;108:1713.

    CAS  Google Scholar 

  95. Ashworth JC, Mehr M, Buxton PG, Best SM, Cameron RE. Optimising collagen scaffold architecture for enhanced periodontal ligament fibroblast migration. J Mater Sci Mater Med. 2018;29:1–11.

    CAS  Google Scholar 

  96. Wu T, Zhang J, Wang Y, Sun B, Yin M, Bowlin GL, Mo X. Design and fabrication of a biomimetic vascular scaffold promoting in situ endothelialization and tunica media regeneration. ACS Appl Bio Mater. 2018;1:833.

    CAS  Google Scholar 

  97. Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;82:121.

    CAS  Google Scholar 

  98. Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater. 2022;139:91.

    CAS  Google Scholar 

  99. Bae S, DiBalsi MJ, Meilinger N, Zhang C, Beal E, Korneva G, Brown RO, Kornev KG, Lee JS. Heparin-eluting electrospun nanofiber yarns for antithrombotic vascular sutures. ACS Appl Mater Interfaces. 2018;10:8426.

    CAS  Google Scholar 

  100. Wu T, Huang C, Li D, Yin A, Liu W, Wang J, Chen J, Ei-Hamshary H, Al-Deyab SS, Mo X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf B Biointerfaces. 2015;133:179.

    CAS  Google Scholar 

  101. Wang Y, Shi H, Qiao J, Tian Y, Wu M, Zhang W, Lin Y, Niu Z, Huang Y. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl Mater Interfaces. 2014;6:2958.

    CAS  Google Scholar 

  102. Quan Q, Meng H, Chang B, Hong L, Li R, Liu G, Cheng X, Tang H, Liu P, Sun Y, Peng J, Zhao Q, Wang Y, Lu S. Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials. 2019;207:49.

    CAS  Google Scholar 

  103. Chen Y, Xu W, Shafiq M, Song D, Wang T, Yuan Z, Xie X, Yu X, Shen Y, Sun B, Liu Y, Mo X. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater. 2022;153:593–608.

    Google Scholar 

  104. John JV, Choksi M, Chen S, Boda SK, Su Y, McCarthy A, Teusink MJ, Reinhardt RA, Xie J. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomedicine. 2019;22: 102081.

    CAS  Google Scholar 

  105. Boda SK, Chen S, Chu K, Kim HJ, Xie J. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery. ACS Appl Mater Interfaces. 2018;10:25069.

    CAS  Google Scholar 

  106. John JV, McCarthy A, Wang H, Chen S, Su Y, Davis E, Li X, Park JS, Reinhardt RA, Xie J. Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray. Small. 2020;16: e1907393.

    Google Scholar 

  107. Chen Y, Shafiq M, Liu M, Morsi Y, Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact Mater. 2020;5:963.

    Google Scholar 

  108. Shen Y, Li D, Deng B, Liu Q, Liu H, Wu T. Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications. R Soc Open Sci. 2019;6: 190596.

    CAS  Google Scholar 

  109. Chen S, Carlson MA, Zhang YS, Hu Y, Xie J. Fabrication of injectable and superelastic nanofiber rectangle matrices (“peanuts”) and their potential applications in hemostasis. Biomaterials. 2018;179:46.

    CAS  Google Scholar 

  110. Chen S, Carlson MA, Li X, Siddique A, Zhu W, Xie J. Minimally invasive delivery of 3D shape recoverable constructs with ordered structures for tissue repair. ACS Biomater Sci Eng. 2021;7:2204.

    CAS  Google Scholar 

  111. John JV, McCarthy A, Su Y, Ackerman DN, Shahriar SMS, Carlson MA, Reid SP, Santarpia JL, Zhu W, Xie J. Nanofiber capsules for minimally invasive sampling of biological specimens from gastrointestinal tract. Acta Biomater. 2022;146:211.

    CAS  Google Scholar 

  112. Chen S, John JV, McCarthy A, Carlson MA, Li X, Xie J. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. Appl Phys Rev. 2020;7: 021406.

    CAS  Google Scholar 

  113. Xue J, Wu T, Li J, Zhu C, Xia Y. Promoting the outgrowth of neurites on electrospun microfibers by functionalization with electrosprayed microparticles of fatty acids. Angew Chem Int Ed Engl. 2019;58:3948.

    CAS  Google Scholar 

  114. Chen S, McCarthy A, John JV, Su Y, Xie J. Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv Mater. 2020;32: e2003754.

    Google Scholar 

  115. Chen W, Xu Y, Liu Y, Wang Z, Li Y, Jiang G, Mo X, Zhou G. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des. 2019;179:107886.

    CAS  Google Scholar 

  116. Chen W, Xu Y, Li Y, Jia L, Mo X, Jiang G, Zhou G. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem Eng J. 2020;382:122986.

    CAS  Google Scholar 

  117. Dong B, Smith ME, Wnek GE. Encapsulation of multiple biological compounds within a single electrospun fiber. Small. 2009;5:1508.

    CAS  Google Scholar 

  118. Li X, Zhang Q, Luo Z, Yan S, You R. Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth. Biointerphases. 2019;14: 061001.

    Google Scholar 

  119. Seal S, Jeyaranjan A, Neal CJ, Kumar U, Sakthivel TS, Sayle DC. Engineered defects in cerium oxides: tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale. 2020;12:6879.

    CAS  Google Scholar 

  120. Wu T, Xue J, Li H, Zhu C, Mo X, Xia Y. General method for generating circular gradients of active proteins on nanofiber scaffolds sought for wound closure and related applications. ACS Appl Mater Interfaces. 2018;10:8536.

    CAS  Google Scholar 

  121. Streeter BW, Xue J, Xia Y, Davis ME. Electrospun nanofiber-based patches for the delivery of cardiac progenitor cells. ACS Appl Mater Interfaces. 2019;11:18242.

    CAS  Google Scholar 

  122. Chen H, Chen X, Chen H, Liu X, Li J, Luo J, He A, Han CC, Liu Y, Xu S. Molecular interaction, chain conformation, and rheological modification during electrospinning of hyaluronic acid aqueous solution. Membranes (Basel). 2020;10:217.

    CAS  Google Scholar 

  123. Liu Y, Ma G, Fang D, Xu J, Zhang H, Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohyd Polym. 2011;83:1011.

    CAS  Google Scholar 

  124. Tsai SW, Liou HM, Lin CJ, Kuo KL, Hung YS, Weng RC, Hsu FY. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix. PLoS ONE. 2012;7: e31200.

    CAS  Google Scholar 

  125. Jiang Q, Reddy N, Zhang S, Roscioli N, Yang Y. Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J Biomed Mater Res A. 2013;101:1237.

    Google Scholar 

  126. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002;13:377.

    CAS  Google Scholar 

  127. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1.

    CAS  Google Scholar 

  128. Wu L, Gu Y, Liu L, Tang J, Mao J, Xi K, Jiang Z, Zhou Y, Xu Y, Deng L, Chen L, Cui W. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials. 2020;227: 119555.

    CAS  Google Scholar 

  129. Song J, Klymov A, Shao J, Zhang Y, Ji W, Kolwijck E, Jansen JA, Leeuwenburgh SCG, Yang F. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules. Adv Healthc Mater. 2017;6:1700014.

    Google Scholar 

  130. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater. 2016;39:146.

    CAS  Google Scholar 

  131. Liu B, Yao T, Ren L, Zhao Y, Yuan X. Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids Surf B Biointerfaces. 2018;172:330.

    CAS  Google Scholar 

  132. Ling J, Wang X, You L, Shen Z. Thermoplastic elastomers based on poly(l-Lysine)-Poly(ε-Caprolactone) multi-block copolymers. J Polym Sci A Polym Chem. 2016;54:3012.

    CAS  Google Scholar 

  133. Youn J, Hong H, Shin W, Kim D, Kim HJ, Kim DS. Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developingin vitrobarrier models. Biofabrication. 2022;14:025010.

    Google Scholar 

  134. Khadka DB, Haynie DT. Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine. 2012;8:1242.

    CAS  Google Scholar 

  135. Wang ZH, Chang YY, Wu JG, Lin CY, An HL, Luo SC, Tang TK, Su WF. Novel 3D neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue. Macromol Biosci. 2018;18:1700251.

    Google Scholar 

  136. Wu J, Cao L, Liu Y, Zheng A, Jiao D, Zeng D, Wang X, Kaplan DL, Jiang X. Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces. 2019;11:8878.

    CAS  Google Scholar 

  137. Wu X, Jiang P, Chen L, Yuan F, Zhu YT. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci U S A. 2014;111:7197.

    CAS  Google Scholar 

  138. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small. 2016;12:612.

    CAS  Google Scholar 

  139. Tanes ML, Xue J, Xia Y. A general strategy for generating gradients of bioactive proteins on electrospun nanofiber mats by masking with bovine serum albumin. J Mater Chem B. 2017;5:5580.

    CAS  Google Scholar 

  140. Xue J, Zhu C, Li J, Li H, Xia Y. Integration of phase-change materials with electrospun fibers for promoting neurite outgrowth under controlled release. Adv Funct Mater. 2018;28:1705563.

    Google Scholar 

  141. Zhou Z, Liu N, Zhang X, Ning X, Miao Y, Wang Y, Sun J, Wan Q, Leng X, Wu T. Manipulating electrostatic field to control the distribution of bioactive proteins or polymeric microparticles on planar surfaces for guiding cell migration. Colloids Surf B Biointerfaces. 2022;209: 112185.

    CAS  Google Scholar 

  142. Li H, Wu T, Xue J, Ke Q, Xia Y. Transforming nanofiber mats into hierarchical scaffolds with graded changes in porosity and/or nanofiber alignment. Macromol Rapid Commun. 2020;41: e1900579.

    Google Scholar 

  143. Yu C, Wang T, Diao H, Liu N, Zhang Y, Jiang H, Zhao P, Shan Z, Sun Z, Wu T, Mo X, Yu T. Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon–bone healing. Adv Fiber Mater. 2022;4:908–22.

    CAS  Google Scholar 

  144. Bhang SH, Jeong SI, Lee TJ, Jun I, Lee YB, Kim BS, Shin H. Electroactive electrospun polyaniline/poly[(L-lactide)-co-(ε-caprolactone)] fibers for control of neural cell function. Macromol Biosci. 2012;12:402.

    CAS  Google Scholar 

  145. Williams RR, Henao M, Pearse DD, Bunge MB. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 2015;24:115.

    Google Scholar 

  146. Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci. 1999;11:1723.

    CAS  Google Scholar 

  147. Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci. 2000;12:4381.

    CAS  Google Scholar 

  148. Udina E, Furey M, Busch S, Silver J, Gordon T, Fouad K. Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp Neurol. 2008;210:238.

    Google Scholar 

  149. Xia G, Song B, Fang J. Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research (Wash D C). 2022;2022:9896274.

    CAS  Google Scholar 

  150. Wang J, Tian L, Chen N, Ramakrishna S, Mo X. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Mater Sci Eng C Mater Biol Appl. 2018;91:715.

    CAS  Google Scholar 

  151. Zhang C, Fan S, Shao H, Hu X, Zhu B, Zhang Y. Graphene trapped silk scaffolds integrate high conductivity and stability. Carbon. 2019;148:16.

    CAS  Google Scholar 

  152. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5: e17.

    CAS  Google Scholar 

  153. Sun B, Wu T, Wang J, Li D, Wang J, Gao Q, Bhutto MA, El-Hamshary H, Al-Deyab SS, Mo X. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B. 2016;4:6670.

    CAS  Google Scholar 

  154. Xue Y, Jackson K, Page N, Mou X, Lofland S, Hu XJMTC. Water-annealing regulated protein-based magnetic nanofiber materials: tuning silk structure and properties to enhance cell response under magnetic fields. Mater Today Chem. 2021;22:100570.

    CAS  Google Scholar 

  155. Chen H, Sun J, Wang Z, Zhou Y, Lou Z, Chen B, Wang P, Guo Z, Tang H, Ma J, Xia Y, Gu N, Zhang F. Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl Mater Interfaces. 2018;10:44279.

    CAS  Google Scholar 

  156. Erfan NA, Barakat NA, Muller-Borer BJJC, Physicochemical SA, Aspects E. Preparation and characterization of ß-lactoglobulin/poly (ethylene oxide) magnetic nanofibers for biomedical applications. Colloids Surf A. 2019;576:63.

    CAS  Google Scholar 

  157. Ma K, Liao C, Huang L, Liang R, Zhao J, Zheng L, Su W. Electrospun PCL/MoS(2) nanofiber membranes combined with NIR-triggered photothermal therapy to accelerate bone regeneration. Small. 2021;17: e2104747.

    Google Scholar 

  158. Tong L, Liao Q, Zhao Y, Huang H, Gao A, Zhang W, Gao X, Wei W, Guan M, Chu PK, Wang H. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials. 2019;193:1.

    CAS  Google Scholar 

  159. Wang X, Lv F, Li T, Han Y, Yi Z, Liu M, Chang J, Wu C. Electrospun micropatterned nanocomposites incorporated with Cu(2)S nanoflowers for skin tumor therapy and wound healing. ACS Nano. 2017;11:11337.

    CAS  Google Scholar 

  160. Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev. 2015;21:1.

    Google Scholar 

  161. Damaraju SM, Shen Y, Elele E, Khusid B, Eshghinejad A, Li J, Jaffe M, Arinzeh TL. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials. 2017;149:51.

    CAS  Google Scholar 

  162. Zhao X, Yuan Z, Yildirimer L, Zhao J, Lin ZY, Cao Z, Pan G, Cui W. Tumor-triggered controlled drug release from electrospun fibers using inorganic caps for inhibiting cancer relapse. Small. 2015;11:4284.

    CAS  Google Scholar 

  163. Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang CH. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater. 2014;10:1324.

    CAS  Google Scholar 

  164. Manoukian OS, Stratton S, Arul MR, Moskow J, Sardashti N, Yu X, Rudraiah S, Kumbar SG. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: in vitro characterization. J Biomed Mater Res B Appl Biomater. 2019;107:1792.

    CAS  Google Scholar 

  165. Ungai-Salanki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabo B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci. 2019;269:309.

    CAS  Google Scholar 

  166. de Oliveira FCS, do Amaral R, Dos Santos LEC, Cummins C, Morris MM, Kearney CJ, Heise A. Versatility of unsaturated polyesters from electrospun macrolactones: RGD immobilization to increase cell attachment. J Biomed Mater Res A. 2022, 110, 257.

  167. Karaman O, Kelebek S, Demirci EA, Ibis F, Ulu M, Ercan UK. Synergistic effect of cold plasma treatment and RGD peptide coating on cell proliferation over titanium surfaces. Tissue Eng Regen Med. 2018;15:13.

    CAS  Google Scholar 

  168. Liu Q, Zheng S, Ye K, He J, Shen Y, Cui S, Huang J, Gu Y, Ding J. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials. 2020;263: 120327.

    CAS  Google Scholar 

  169. Li Y, Wang Y, Ye J, Yuan J, Xiao Y. Fabrication of poly(epsilon-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;68:177.

    CAS  Google Scholar 

  170. Li D, Wu T, He N, Wang J, Chen W, He L, Huang C, Ei-Hamshary HA, Al-Deyab SS, Ke Q, Mo X. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids Surf B. 2014;121:432.

    CAS  Google Scholar 

  171. Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 2009;30:2085.

    CAS  Google Scholar 

  172. Jiang M, Xu S, Bai M, Zhang A. The emerging role of MEIS1 in cell proliferation and differentiation. Am J Physiol Cell Physiol. 2021;320:C264.

    CAS  Google Scholar 

  173. Venugopal J, Zhang YZ, Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology. 2005;16:2138.

    CAS  Google Scholar 

  174. Criscenti G, De Maria C, Longoni A, van Blitterswijk CA, Fernandes HAM, Vozzi G, Moroni L. Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication. 2018;10: 045005.

    Google Scholar 

  175. Niu Y, Stadler FJ, Fang J, Galluzzi M. Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression. Colloids Surf B Biointerfaces. 2021;206: 111970.

    CAS  Google Scholar 

  176. Sun B, Wu T, Wang J, Li D, Wang J, Gao Q, Bhutto MA, El-Hamshary H, Al-Deyab SS, Mo X. Polypyrrole-coated poly(l-lactic acid-co-epsilon-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B. 2016;4:6670.

    CAS  Google Scholar 

  177. Phan DN, Choi HY, Oh SG, Kim M, Lee H. Fabrication of ZnO nanoparticle-decorated nanofiber mat with high uniformity protected by constructing tri-layer structure. Polymers (Basel). 2020;12:1859.

    CAS  Google Scholar 

  178. Collins G, Federici J, Imura Y, Catalani LH. Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. J Appl Phys. 2012;111:044701.

    Google Scholar 

  179. Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1:56.

    Google Scholar 

  180. Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, Rouard H, Chevallier N. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 2017;59:94.

    CAS  Google Scholar 

  181. Huang L, Huang J, Shao H, Hu X, Cao C, Fan S, Song L, Zhang Y. Silk scaffolds with gradient pore structure and improved cell infiltration performance. Mater Sci Eng C Mater Biol Appl. 2019;94:179.

    CAS  Google Scholar 

  182. Skotak M, Ragusa J, Gonzalez D, Subramanian A. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Biomed Mater. 2011;6: 055012.

    Google Scholar 

  183. Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface. 2005;2:309.

    Google Scholar 

  184. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A. 2010;94:1312.

    Google Scholar 

  185. Wang Y, Wu T, Zhang J, Feng Z, Yin M, Mo X. A bilayer vascular scaffold with spatially controlled release of growth factors to enhance in situ rapid endothelialization and smooth muscle regeneration. Mater Des. 2021;204:109649.

    CAS  Google Scholar 

  186. Trepat X, Chen Z, Jacobson K. Cell migration. Compr Physiol. 2012;2:2369.

    Google Scholar 

  187. Xue J, Wu T, Xia Y. Perspective: aligned arrays of electrospun nanofibers for directing cell migration. APL Mater. 2018;6:120902.

    Google Scholar 

  188. Xie J, Shen H, Yuan G, Lin K, Su J. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. Mater Sci Eng C Mater Biol Appl. 2021;120: 111787.

    CAS  Google Scholar 

  189. Liu Y, Franco A, Huang L, Gersappe D, Clark RA, Rafailovich MH. Control of cell migration in two and three dimensions using substrate morphology. Exp Cell Res. 2009;315:2544.

    CAS  Google Scholar 

  190. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 2010;6:2970.

    CAS  Google Scholar 

  191. Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis AS. The influence of microscale topography on fibroblast attachment and motility. Biomaterials. 2004;25:5781.

    CAS  Google Scholar 

  192. Zhang D, Sheng Y, Piano N, Jakuszeit T, Cozens EJ, Dong L, Buell AK, Pollet A, Lei IM, Wang W, Terentjev E, Huang YYS. Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication. 2022. https://doi.org/10.1088/1758-5090/ac48e6.

    Article  Google Scholar 

  193. Xie J, Macewan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano. 2010;4:5027.

    CAS  Google Scholar 

  194. Xue J, Wu T, Qiu J, Xia Y. Accelerating cell migration along radially aligned nanofibers through the addition of electrosprayed nanoparticles in a radial density gradient. Part Part Syst Charact. 2022;39:2100280.

    CAS  Google Scholar 

  195. Ren T, Yu S, Mao Z, Gao C. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Biomaterials. 2015;56:58.

    CAS  Google Scholar 

  196. Zhang X, Guo M, Guo Q, Liu N, Wang Y, Wu T. Modulating axonal growth and neural stem cell migration with the use of uniaxially aligned nanofiber yarns welded with NGF-loaded microparticles. Mater Today Adv. 2023;2023:17. https://doi.org/10.1016/j.mtadv.2023.100343.Accessed11January.

    Article  Google Scholar 

  197. Deng R, Luo Z, Rao Z, Lin Z, Chen S, Zhou J, Zhu Q, Liu X, Bai Y, Quan D. Decellularized extracellular matrix containing electrospun fibers for nerve regeneration: a comparison between core-shell structured and preblended composites. Adv Fiber Mater. 2022;4:503.

    CAS  Google Scholar 

  198. Taskin MB, Xu R, Gregersen H, Nygaard JV, Besenbacher F, Chen M. Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation. ACS Appl Mater Interfaces. 2016;8:15864.

    CAS  Google Scholar 

  199. Horner CB, Maldonado M, Tai Y, Rony R, Nam J. Spatially regulated multiphenotypic differentiation of stem cells in 3D via engineered mechanical gradient. ACS Appl Mater Interfaces. 2019;11:45479.

    CAS  Google Scholar 

  200. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7:6331.

    CAS  Google Scholar 

  201. Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148.

    CAS  Google Scholar 

  202. Xia G, Zhang H, Cheng R, Wang H, Song Z, Deng L, Huang X, Santos HA, Cui W. Localized controlled delivery of gemcitabine via microsol electrospun fibers to prevent pancreatic cancer recurrence. Adv Healthc Mater. 2018;7: e1800593.

    Google Scholar 

  203. Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials. 2016;76:273.

    CAS  Google Scholar 

  204. Suneet K, De T, Rangarajan A, Jain S. Magnetic nanofibers based bandage for skin cancer treatment: a non-invasive hyperthermia therapy. Cancer Rep (Hoboken). 2020;3: e1281.

    CAS  Google Scholar 

  205. Wang M, Tan Y, Li D, Xu G, Yin D, Xiao Y, Xu T, Chen X, Zhu X, Shi X. Negative isolation of circulating tumor cells using a microfluidic platform integrated with streptavidin-functionalized PLGA nanofibers. Adv Fiber Mater. 2021;3:192.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32171322, 82001970), Natural Science Foundation of Shandong Province (ZR2021QC063, ZR2021YQ17), Young Elite Scientists Sponsorship Program by CAST (No. YESS20200097), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2215), Qingdao Key Health Discipline Development Fund (2020-2022), Qingdao Clinical Research Center for Oral Diseases (22-3-7-lczx-7-nsh), and the Startup Funding of Qingdao University (T.W.). We also thank the "Advanced Biomaterials and Regenerative Medicine" Innovation Team supported by the Young-Talent Introduction and Cultivation Plan in the Universities of Shandong Province.

Funding

National Natural Science Foundation of China, 32171322, Tong Wu, 82001970, Tong Wu, Natural Science Foundation of Shandong Province, ZR2021QC063, Yuanfei Wang, ZR2021YQ17, Tong Wu, Young Elite Scientists Sponsorship Program by CAST, No. YESS20200097, Tong Wu, Startup Funding of Qingdao University, T.W., Tong Wu, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, KF2215, Tong Wu, Qingdao Key Health Discipline Development Fund, 2020-2022, Yuanfei Wang, Qingdao Clinical Research Center for Oral Diseases, 22-3-7-lczx-7-nsh, Yuanfei Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfei Wang or Tong Wu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guo, Q., Zhang, X. et al. Progress in Electrospun Fibers for Manipulating Cell Behaviors. Adv. Fiber Mater. 5, 1241–1272 (2023). https://doi.org/10.1007/s42765-023-00281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00281-9

Keywords

Navigation