Skip to main content
Log in

Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrospinning is a popular and effective method of producing porous nanofibers with a large surface area, superior physical and chemical properties, and a controllable pore size. Owing to these properties, electrospun nanofibers can mimic the extracellular matrix and some human tissue structures, based on the fiber configuration. Consequently, the application of electrospun nanofibers as biomaterials, varying from two-dimensional (2D) wound dressings to three-dimensional (3D) tissue engineering scaffolds, has increased rapidly in recent years. Nanofibers can either be uniform fiber strands or coaxial drug carriers, and their overall structure varies from random mesh-like mats to aligned or gradient scaffolds. In addition, the pore size of the fibers can be adjusted or the fibers can be loaded with disparate medicines to provide different functions. This review discusses the various structures and applications of 2D fiber mats and 3D nanofibrous scaffolds made up of different one-dimensional (1D) fibers in tissue engineering. In particular, we focus on the improvements made in recent years, especially in the fields of wound healing, angiogenesis, and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 2020, 12, e1626.

    Article  Google Scholar 

  2. Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106.

    Article  CAS  Google Scholar 

  3. Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

    Article  CAS  Google Scholar 

  4. Zhang, C. L.; Yu, S. H. Spraying functional fibres by electrospinning. Mater. Horiz. 2016, 3, 266–269.

    Article  CAS  Google Scholar 

  5. Liu, G. T.; Bao, Z. T.; Wu, J. Injectable baicalin/F127 hydrogel with antioxidant activity for enhanced wound healing. Chin. Chem. Lett. 2020, 31, 1817–1821.

    Article  CAS  Google Scholar 

  6. Gao, Y. F.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780.

    Article  CAS  Google Scholar 

  7. Xue, J. J.; Pisignano, D.; Xia, Y. N. Maneuvering the migration and differentiation of stem cells with electrospun nanofibers. Adv. Sci. 2020, 7, 2000735.

    Article  CAS  Google Scholar 

  8. Karimi, F.; O’Connor, A. J.; Qiao, G. G.; Heath, D. E. Integrin clustering matters: A review of biomaterials functionalized with multivalent integrin-binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration. Adv. Healthc. Mater. 2018, 7, 1701324.

    Article  Google Scholar 

  9. Ding, J. X.; Zhang, J.; Li, J. N.; Li, D.; Xiao, C. S.; Xiao, H. H.; Yang, H. H.; Zhuang, X. L.; Chen, X. S. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34.

    Article  CAS  Google Scholar 

  10. Chen, S. X.; Li, R. Q.; Li, X. R.; Xie, J. W. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 188–213.

    Article  CAS  Google Scholar 

  11. Arasu, V.; Hwang, S.; Zhang, B.; Byun, D.; Park, S. H. 1D fibers and 2D patterns made of quantum dot-embedded DNA via electrospinning and electrohydrodynamic jet printing. Adv. Mater. Technol. 2019, 4, 1800280.

    Article  Google Scholar 

  12. Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed. 2007, 46, 5670–5703.

    Article  CAS  Google Scholar 

  13. Chen, Z. G.; Mo, X. M.; Qing, F. L. Electrospinning of collagen-chitosan complex. Mater. Lett. 2007, 61, 3490–3494.

    Article  CAS  Google Scholar 

  14. Li, X. H.; Li, B. S.; Ullah, M. W.; Panday, R.; Cao, J. M.; Li, Q. B.; Zhang, Y. P.; Wang, L.; Yang, G. Water-stable and finasteride-loaded polyvinyl alcohol nanofibrous particles with sustained drug release for improved prostatic artery embolization—in vitro and in vivo evaluation. Mater. Sci. Eng.: C 2020, 115, 111107.

    Article  CAS  Google Scholar 

  15. Hou, L. L.; Wang, N.; Wu, J.; Cui, Z. M.; Jiang, L.; Zhao, Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv. Funct. Mater. 2018, 28, 1801114.

    Article  Google Scholar 

  16. Yarin, A. L. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym. Adv. Technol. 2011, 22, 310–317.

    Article  CAS  Google Scholar 

  17. He, P.; Zhong, Q.; Ge, Y.; Guo, Z. Z.; Tian, J. H.; Zhou, Y. H.; Ding, S.; Li, H.; Zhou, C. R. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater. Sci. Eng.: C 2018, 90, 549–556.

    Article  CAS  Google Scholar 

  18. Zhao, Y.; Cao, X. Y.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 2007, 129, 764–765.

    Article  CAS  Google Scholar 

  19. Ji, W.; Yang, F.; van den Beucken, J. J. J. P.; Bian, Z.; Fan, M. W.; Chen, Z.; Jansen, J. A. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomater. 2010, 6, 4199–4207.

    Article  CAS  Google Scholar 

  20. Li, L. L.; Peng, S. J.; Cheah, Y. L.; Wang, J.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Nanoscale 2013, 5, 134–138.

    Article  CAS  Google Scholar 

  21. Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Compound core-shell polymer nanofibers by co-electrospinning. Adv. Mater. 2003, 15, 1929–1932.

    Article  CAS  Google Scholar 

  22. Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M. Electrospun polyaniline/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Adv. Mater. 2006, 18, 348–353.

    Article  CAS  Google Scholar 

  23. Moreno, I.; González-González, V.; Romero-García, J. Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. Eur. Polym. J. 2011, 47, 1264–1272.

    Article  CAS  Google Scholar 

  24. Zhang, C.; Feng, F. Q.; Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 2018, 80, 175–186.

    Article  CAS  Google Scholar 

  25. Li, X. L.; Xu, F. N.; He, Y.; Li, Y.; Hou, J. W.; Yang, G.; Zhou, S. B. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv. Funct. Mater. 2020, 30, 2004851.

    Article  CAS  Google Scholar 

  26. Rathore, P.; Schiffman, J. D. Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 2021, 13, 48–66.

    Article  CAS  Google Scholar 

  27. Pakravan, M.; Heuzey, M. C.; Ajji, A. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 2012, 13, 412–421.

    Article  CAS  Google Scholar 

  28. Liu, X. K.; Yang, Y. Y.; Yu, D. G.; Zhu, M. J.; Zhao, M.; Williams, G. R. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 2019, 356, 886–894.

    Article  CAS  Google Scholar 

  29. Li, L. L.; Peng, S. J.; Lee, J. K. Y.; Ji, D. X.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139.

    Article  CAS  Google Scholar 

  30. Yoon, J.; Yang, H. S.; Lee, B. S.; Yu, W. R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater. 2018, 30, 1704765.

    Article  Google Scholar 

  31. Ou, K. L.; Chen, C. S.; Lin, L. H.; Lu, J. C.; Shu, Y. C.; Tseng, W. C.; Yang, J. C.; Lee, S. Y.; Chen, C. C. Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly(l-lactic acid) (PLLA) fibers. Eur. Polym. J. 2011, 47, 882–892.

    Article  CAS  Google Scholar 

  32. Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polymeric microtubes for water filtration by co-xial electrospinning technique. Polym. Adv. Technol. 2017, 28, 570–582.

    Article  CAS  Google Scholar 

  33. Yang, H. S.; Lee, B. S.; You, B. C.; Sohn, H. J.; Yu, W. R. Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multichannels via coaxial electrospinning and their anodic performance. RSC Adv. 2014, 4, 47389–47395.

    Article  CAS  Google Scholar 

  34. Jeong, Y. J.; Koo, W. T.; Jang, J. S.; Kim, D. H.; Kim, M. H.; Kim, I. D. Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor. ACS Appl. Mater. Interfaces 2018, 10, 2016–2025.

    Article  CAS  Google Scholar 

  35. Fong, H.; Chun, I.; Reneker, D. H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592.

    Article  CAS  Google Scholar 

  36. Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 2005, 46, 3372–3384.

    Article  CAS  Google Scholar 

  37. Lin, T.; Wang, H. X.; Wang, H. M.; Wang, X. G. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, 1375–1381.

    Article  CAS  Google Scholar 

  38. Zuo, W. W.; Zhu, M. F.; Yang, W.; Yu, H.; Chen, Y. M.; Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 2005, 45, 704–709.

    Article  CAS  Google Scholar 

  39. Liu, Y.; He, J. H.; Yu, J. Y.; Zeng, H. M. Controlling numbers and sizes of beads in electrospun nanofibers. Polym. Int. 2008, 57, 632–636.

    Article  CAS  Google Scholar 

  40. Tian, X. L.; Bai, H.; Zheng, Y. M.; Jiang, L. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Adv. Funct. Mater. 2011, 21, 1398–1402.

    Article  CAS  Google Scholar 

  41. Somvipart, S.; Kanokpanont, S.; Rangkupan, R.; Ratanavaraporn, J.; Damrongsakkul, S. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. Int. J. Biol. Macromol. 2013, 55, 176–184.

    Article  CAS  Google Scholar 

  42. Li, T. X.; Ding, X.; Tian, L. L.; Hu, J. Y.; Yang, X. D.; Ramakrishna, S. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Mater. Sci. Eng.: C 2017, 74, 471–477.

    Article  CAS  Google Scholar 

  43. Greenfeld, I.; Rodricks, C. W.; Sui, X. M.; Wagner, H. D. Beaded fiber composites—Stiffness and strength modeling. J. Mech. Phys. Solids 2019, 125, 384–400.

    Article  Google Scholar 

  44. Li, T. X.; Wang, L.; Huang, Y. F.; Xin, B. J.; Liu, S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. J. Biomater. Sci., Polym. Ed. 2020, 31, 1223–1236.

    Article  CAS  Google Scholar 

  45. Xi, H. J.; Zhao, H. J. Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH. J. Mater. Sci. 2019, 54, 4246–4258.

    Article  CAS  Google Scholar 

  46. Rasouli, M.; Pirsalami, S.; Zebarjad, S. M. Study on the formation and structural evolution of bead-on-string in electrospun polysulfone mats. Polym. Int. 2020, 69, 822–832.

    Article  CAS  Google Scholar 

  47. Bu, N. B.; Huang, Y. A.; Deng, H. X.; Yin, Z. P. Tunable bead-on-string microstructures fabricated by mechano-electrospinning. J. Phys. D: Appl. Phys. 2012, 45, 405301.

    Article  Google Scholar 

  48. Wang, Z.; Zhao, C. C.; Pan, Z. J. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid Interface Sci. 2015, 441, 121–129.

    Article  CAS  Google Scholar 

  49. Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46, 4799–4810.

    Article  CAS  Google Scholar 

  50. Abutaleb, A.; Lolla, D.; Aljuhani, A.; Shin, H. U.; Rajala, J. W.; Chase, G. G. Effects of surfactants on the morphology and properties of electrospun polyetherimide fibers. Fibers 2017, 5, 33.

    Article  Google Scholar 

  51. Yu, J.; Qiu, Y. J.; Zha, X. X.; Yu, M.; Yu, J. L.; Rafique, J.; Yin, J. Production of aligned helical polymer nanofibers by electrospinning. Eur. Polym. J. 2008, 44, 2838–2844.

    Article  CAS  Google Scholar 

  52. Kessick, R.; Tepper, G. Microscale polymeric helical structures produced by electrospinning. Appl. Phys. Lett. 2004, 84, 4807–4809.

    Article  CAS  Google Scholar 

  53. Dabirian, F.; Hosseini Ravandi, S. A.; Hashemi Sanatgar, R.; Hinestroza, J. P. Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fibers Polym. 2011, 12, 610–615.

    Article  CAS  Google Scholar 

  54. Silva, P. E. S.; Vistulo de Abreu, F.; Godinho, M. H. Shaping helical electrospun filaments: A review. Soft Matter 2017, 13, 6678–6688.

    Article  CAS  Google Scholar 

  55. Fennessey, S. F.; Farris, R. J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004, 45, 4217–4225.

    Article  CAS  Google Scholar 

  56. Affdl, J. C. H.; Kardos, J. L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352.

    Article  Google Scholar 

  57. Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G. L.; Li, C.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161–1165.

    Article  CAS  Google Scholar 

  58. Liu, C. K.; Sun, R. J.; Lai, K.; Sun, C. Q.; Wang, Y. W. Preparation of short submicron-fiber yarn by an annular collector through electrospinning. Mater. Lett. 2008, 62, 4467–4469.

    Article  CAS  Google Scholar 

  59. Nakashima, R.; Watanabe, K.; Lee, Y.; Kim, B. S.; Kim, I. S. Mechanical properties of poly(vinylidene fluoride) nanofiber filaments prepared by electrospinning and twisting. Adv. Polym. Technol. 2013, 32, E44–E52.

    Article  Google Scholar 

  60. O’Connor, R. A.; McGuinness, G. B. Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 2016, 230, 987–998.

    Article  Google Scholar 

  61. Wu, J. L.; Liu, S.; He, L. P.; Wang, H. S.; He, C. L.; Fan, C. Y.; Mo, X. M. Electrospun nanoyarn scaffold and its application in tissue engineering. Mater. Lett. 2012, 89, 146–149.

    Article  CAS  Google Scholar 

  62. Wu, J. L.; Huang, C.; Liu, W.; Yin, A. L.; Chen, W. M.; He, C. L.; Wang, H. S.; Liu, S.; Fan, C. Y.; Bowlin, G. L. et al. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J. Biomed. Nanotechnol. 2014, 10, 603–614.

    Article  CAS  Google Scholar 

  63. Maleki, H.; Gharehaghaji, A. A.; Toliyat, T.; Dijkstra, P. J. Drug release behavior of electrospun twisted yarns as implantable medical devices. Biofabrication 2016, 8, 035019.

    Article  CAS  Google Scholar 

  64. Burger, C.; Hsiao, B. S.; Chu, B. J. M. Nanofibrous materials and their applications. Ann. Rev. Mater. Res. 2006, 36, 333–368.

    Article  CAS  Google Scholar 

  65. Mushi, N. E.; Kochumalayil, J.; Cervin, N. T.; Zhou, Q.; Berglund, L. A. Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: Preparation, structure, and properties. ChemSusChem 2016, 9, 989–995.

    Article  CAS  Google Scholar 

  66. Wang, M. X.; Huang, Z. H.; Kang, F. Y.; Liang, K. M. Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins. Mater. Lett. 2011, 65, 1875–1877.

    Article  CAS  Google Scholar 

  67. Han, J. P.; Xiong, L. K.; Jiang, X. Y.; Yuan, X. Y.; Zhao, Y.; Yang, D. Y. Bio-functional electrospun nanomaterials: From topology design to biological applications. Prog. Polym. Sci. 2019, 91, 1–28.

    Article  CAS  Google Scholar 

  68. Naveen, N.; Kumar, R.; Balaji, S.; Uma, T. S.; Natrajan, T. S.; Sehgal, P. K. Synthesis of nonwoven nanofibers by electrospinning — a promising biomaterial for tissue engineering and drug delivery. Adv. Eng. Mater. 2010, 12, B380–B387.

    Article  Google Scholar 

  69. Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366.

    Article  Google Scholar 

  70. Liu, Y. Q.; Zhang, X. P.; Xia, Y. N.; Yang, H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 2010, 22, 2454–2457.

    Article  CAS  Google Scholar 

  71. Yuan, H. H.; Zhao, S. F.; Tu, H. B.; Li, B. Y.; Li, Q.; Feng, B.; Peng, H. J.; Zhang, Y. Z. Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. J. Mater. Chem. 2012, 22, 19634–19638.

    Article  CAS  Google Scholar 

  72. Yi, B. C.; Zhang, H. L.; Yu, Z. P.; Yuan, H. H.; Wang, X. L.; Zhang, Y. Z. Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration. J. Mater. Chem. B 2018, 6, 3934–3945.

    Article  CAS  Google Scholar 

  73. Yi, B. C.; Shen, Y. B.; Tang, H.; Wang, X. L.; Li, B.; Zhang, Y. Z. Stiffness of aligned fibers regulates the phenotypic expression of vascular smooth muscle cells. ACS Appl. Mater. Interfaces 2019, 11, 6867–6880.

    Article  CAS  Google Scholar 

  74. Wang, L.; Chang, M. W.; Ahmad, Z.; Zheng, H. X.; Li, J. S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem. Eng. J. 2017, 307, 661–669.

    Article  CAS  Google Scholar 

  75. Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

    Article  CAS  Google Scholar 

  76. Jun, I.; Chung, Y. W.; Heo, Y. H.; Han, H. S.; Park, J.; Jeong, H.; Lee, H.; Lee, Y. B.; Kim, Y. C.; Seok, H. K. et al. Creating hierarchical topographies on fibrous platforms using femtosecond laser ablation for directing myoblasts behavior. ACS Appl. Mater. Interfaces 2016, 8, 3407–3417.

    Article  CAS  Google Scholar 

  77. Ren, X. Z.; Li, J. X.; Li, J. Y.; Jiang, Y. Q.; Li, L.; Yao, Q. Q.; Ke, Q. F.; Xu, H. Aligned porous fibrous membrane with a biomimetic surface to accelerate cartilage regeneration. Chem. Eng. J. 2019, 370, 1027–1038.

    Article  CAS  Google Scholar 

  78. Brennan, D. A.; Conte, A. A.; Kanski, G.; Turkula, S.; Hu, X.; Kleiner, M. T.; Beachley, V. Mechanical considerations for electrospun nanofibers in tendon and ligament repair. Adv. Healthc. Mater. 2018, 7, 1701277.

    Article  Google Scholar 

  79. Deepthi, S.; Nivedhitha Sundaram, M.; Deepti Kadavan, J.; Jayakumar, R. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr. Polym. 2016, 153, 492–500.

    Article  CAS  Google Scholar 

  80. Zhu, L.; Jia, S. J.; Liu, T. J.; Yan, L.; Huang, D. G.; Wang, Z. Y.; Chen, S.; Zhang, Z. P.; Zeng, W.; Zhang, Y. et al. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv. Funct. Mater. 2020, 30, 2002610.

    Article  CAS  Google Scholar 

  81. Zou, Y. W.; Qin, J. B.; Huang, Z. B.; Yin, G. F.; Pu, X. M.; He, D. Fabrication of aligned conducting PPy-PLLA fiber films and their electrically controlled guidance and orientation for neurites. ACS Appl. Mater. Interfaces 2016, 8, 12576–12582.

    Article  CAS  Google Scholar 

  82. Yeo, M.; Kim, G. H. Anisotropically aligned cell-laden nanofibrous bundle fabricated via cell electrospinning to regenerate skeletal muscle tissue. Small 2018, 14, 1803491.

    Article  Google Scholar 

  83. Li, X. R.; Li, M. Y.; Sun, J.; Zhuang, Y.; Shi, J. J.; Guan, D. W.; Chen, Y. Y.; Dai, J. W. Radially aligned electrospun fibers with continuous gradient of SDF1a for the guidance of neural stem cells. Small 2016, 12, 5009–5018.

    Article  CAS  Google Scholar 

  84. Wu, T.; Xue, J. J.; Xia, Y. N. Engraving the surface of electrospun microfibers with nanoscale grooves promotes the outgrowth of neurites and the migration of schwann cells. Angew. Chem., Int. Ed. 2020, 59, 15626–15632.

    Article  CAS  Google Scholar 

  85. Gao, X. Z.; Han, S. Y.; Zhang, R. H.; Liu, G. T.; Wu, J. Progress in electrospun composite nanofibers: Composition, performance and applications for tissue engineering. J. Mater. Chem. B 2019, 7, 7075–7089.

    Article  CAS  Google Scholar 

  86. Nguyen, L. H.; Gao, M. Y.; Lin, J. Q.; Wu, W. T.; Wang, J.; Chew, S. Y. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci. Rep. 2017, 7, 42212.

    Article  CAS  Google Scholar 

  87. Salerno, A.; Iannace, S.; Netti, P. A. Graded biomimetic osteochondral scaffold prepared via CO2 foaming and micronized NaCl leaching. Mater. Lett. 2012, 82, 137–140.

    Article  CAS  Google Scholar 

  88. Wang, Y. Z.; Xu, R.; Luo, G. X.; Lei, Q.; Shu, Q.; Yao, Z. H.; Li, H. S.; Zhou, J. Y.; Tan, J. L.; Yang, S. et al. Biomimetic fibroblast-loaded artificial dermis with “sandwich” structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization. Acta Biomater. 2016, 30, 246–257.

    Article  CAS  Google Scholar 

  89. Huang, L.; Huang, J. W.; Shao, H. L.; Hu, X. C.; Cao, C. B.; Fan, S. N.; Song, L. J.; Zhang, Y. P. Silk scaffolds with gradient pore structure and improved cell infiltration performance. Mater. Sci. Eng.: C 2019, 94, 179–189.

    Article  CAS  Google Scholar 

  90. He, M.; Wang, Q.; Xie, L.; Wu, H.; Zhao, W. F.; Tian, W. D. Hierarchically multi-functionalized graded membrane with enhanced bone regeneration and self-defensive antibacterial characteristics for guided bone regeneration. Chem. Eng. J. 2020, 398, 125542.

    Article  CAS  Google Scholar 

  91. Bottino, M. C.; Thomas, V.; Janowski, G. M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011, 7, 216–224.

    Article  CAS  Google Scholar 

  92. Wu, T. T.; Ding, M. Z.; Shi, C. P.; Qiao, Y. Q.; Wang, P. P.; Qiao, R. R.; Wang, X. C.; Zhong, J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chin. Chem. Lett. 2020, 31, 617–625.

    Article  CAS  Google Scholar 

  93. Oh, S. H.; Park, I. K.; Kim, J. M.; Lee, J. H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28, 1664–1671.

    Article  CAS  Google Scholar 

  94. Lowery, J. L.; Datta, N.; Rutledge, G. C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504.

    Article  CAS  Google Scholar 

  95. Mbundi, L.; González-Pérez, M.; González-Pérez, F.; Juanes-Gusano, D.; Rodríguez-Cabello, J. Trends in the development of tailored elastin-like recombinamer-based porous biomaterials for soft and hard tissue applications. Front. Mater. 2021, 7, 601795.

    Article  Google Scholar 

  96. Walser, J.; Stok, K. S.; Caversaccio, M. D.; Ferguson, S. J. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications. Biofabrication 2016, 8, 025007.

    Article  Google Scholar 

  97. Eichholz, K. F.; Hoey, D. A. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018, 75, 140–151.

    Article  CAS  Google Scholar 

  98. He, F. L.; Li, D. W.; He, J.; Liu, Y. Y.; Ahmad, F.; Liu, Y. L.; Deng, X. D.; Ye, Y. J.; Yin, D. C. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater. Sci. Eng.: C 2018, 86, 18–27.

    Article  CAS  Google Scholar 

  99. Aghajanpoor, M.; Hashemi-Najafabadi, S.; Baghaban- Eslaminejad, M.; Bagheri, F.; Mohammad Mousavi, S.; Azam Sayyahpour, F. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J. Biomed. Mater. Res. Part A 2017, 105, 1887–1899.

    Article  CAS  Google Scholar 

  100. Yuan, L.; Li, X. Y.; Ge, L. M.; Jia, X. Q.; Lei, J. F.; Mu, C. D.; Li, D. F. Emulsion template method for the fabrication of gelatin-based scaffold with a controllable pore structure. ACS Appl. Mater. Interfaces 2019, 11, 269–277.

    Article  CAS  Google Scholar 

  101. Park, H. J.; Lee, O. J.; Lee, M. C.; Moon, B. M.; Ju, H. W.; Lee, J. M.; Kim, J. H.; Kim, D. W.; Park, C. H. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int. J. Biol. Macromol. 2015, 78, 215–223.

    Article  CAS  Google Scholar 

  102. Refifi, J.; Oudadesse, H.; Merdrignac-Conanec, O.; El Feki, H.; Lefeuvre, B. Salt leaching using powder (SLUP) process for glass/chitosan scaffold elaboration for biomaterial applications. J. Aust. Ceram. Soc. 2020, 56, 1167–1178.

    Article  CAS  Google Scholar 

  103. Coogan, K. R.; Stone, P. T.; Sempertegui, N. D.; Rao, S. S. Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. Eur. Polym. J. 2020, 135, 109870.

    Article  CAS  Google Scholar 

  104. Lin, J. Y.; Ding, B.; Yu, J. Y.; Hsieh, Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interfaces 2010, 2, 521–528.

    Article  CAS  Google Scholar 

  105. Cheng, T. T.; Li, S. Q.; Xu, L.; Ahmed, A. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning. Mater. Des. 2019, 178, 107867.

    Article  Google Scholar 

  106. Watson, N. J.; Johal, R. K.; Glover, Z.; Reinwald, Y.; White, L. J.; Ghaemmaghami, A. M.; Morgan, S. P.; Rose, F. R. A. J.; Povey, M. J. W.; Parker, N. G. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport. Mater. Sci. Eng.: C 2013, 33, 4825–4832.

    Article  CAS  Google Scholar 

  107. Lee, J. B.; Jeong, S. I.; Bae, M. S.; Yang, D. H.; Heo, D. N.; Kim, C. H.; Alsberg, E.; Kwon, I. K. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. Part A 2011, 17, 2695–2702.

    Article  CAS  Google Scholar 

  108. Ekaputra, A. K.; Prestwich, G. D.; Cool, S. M.; Hutmacher, D. W. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008, 9, 2097–2103.

    Article  CAS  Google Scholar 

  109. Zhu, X. L.; Cui, W. G.; Li, X. H.; Jin, Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 2008, 9, 1795–1801.

    Article  CAS  Google Scholar 

  110. Sheikh, F. A.; Ju, H. W.; Lee, J. M.; Moon, B. M.; Park, H. J.; Lee, O. J.; Kim, J. H.; Kim, D. K.; Park, C. H. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnol., Biol. Med. 2015, 11, 681–691.

    Article  CAS  Google Scholar 

  111. Simonet, M.; Schneider, O. D.; Neuenschwander, P.; Stark, W. J. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym. Eng. Sci. 2007, 47, 2020–2026.

    Article  CAS  Google Scholar 

  112. Leong, M. F.; Rasheed, M. Z.; Lim, T. C.; Chian, K. S. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J. Biomed. Mater. Res. Part A 2009, 91A, 231–240.

    Article  CAS  Google Scholar 

  113. Ko, J.; Kan, D. Y.; Jun, M. B. G. Combining melt electrospinning and particulate leaching for fabrication of porous microfibers. Manuf. Lett. 2015, 3, 5–8.

    Article  Google Scholar 

  114. Pham, O. P.; Sharma, U.; Mikos, A. G. Electrospun Poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Macromolecules 2006, 7, 2796–2805.

    CAS  Google Scholar 

  115. Larrondo, L.; St. John Manley, R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci.: Polym. Phys. Ed. 1981, 19, 909–920.

    CAS  Google Scholar 

  116. Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 2016, 56, 116–166.

    Article  CAS  Google Scholar 

  117. Wunner, F. M.; Wille, M. L.; Noonan, T. G.; Bas, O.; Dalton, P. D.; De-Juan-Pardo, E. M.; Hutmacher, D. W. Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mate. 2018, 30, 1706570.

    Article  Google Scholar 

  118. Rothrauff, B. B.; Lauro, B. B.; Yang, G.; Debski, R. E.; Musahl, V.; Tuan, R. S. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng. Part A 2017, 23, 378–389.

    Article  CAS  Google Scholar 

  119. Park, S. H.; Kim, M. S.; Lee, B.; Park, J. H.; Lee, H. J.; Lee, N. K.; Jeon, N. L.; Suh, K. Y. Creation of a hybrid scaffold with dual configuration of aligned and random electrospun fibers. ACS Appl. Mater. Interfaces 2016, 8, 2826–2832.

    Article  CAS  Google Scholar 

  120. Shim, I. K.; Suh, W. H.; Lee, S. Y.; Lee, S. H.; Heo, S. J.; Lee, M. C.; Lee, S. J. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J. Biomed. Mater. Res. Part A 2009, 90A, 595–602.

    Article  CAS  Google Scholar 

  121. Zhou, J.; Cao, C. B.; Ma, X. L. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int. J. Biol. Macromol. 2009, 45, 504–510.

    Article  CAS  Google Scholar 

  122. Joung, D.; Lavoie, N. S.; Guo, S. Z.; Park, S. H.; Parr, A. M.; McAlpine, M. C. 3D printed neural regeneration devices. Adv. Funct. Mater. 2020, 30, 1906237.

    Article  CAS  Google Scholar 

  123. Chen, W. M.; Xu, Y.; Li, Y. Q.; Jia, L. T.; Mo, X. M.; Jiang, G. N.; Zhou, G. D. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem. Eng. J. 2020, 382, 122986.

    Article  CAS  Google Scholar 

  124. Chen, T. T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv. Funct. Mater. 2018, 28, 1800514.

    Article  Google Scholar 

  125. Eom, S.; Park, S. M.; Hong, H.; Kwon, J.; Oh, S. R.; Kim, J.; Kim, D. S. Hydrogel-assisted electrospinning for fabrication of a 3D complex tailored nanofiber macrostructure. ACS Appl. Mater. Interfaces 2020, 12, 51212–51224.

    Article  CAS  Google Scholar 

  126. Lee, J. S.; Chae, S.; Yoon, D.; Yoon, D.; Chun, W.; Kim, G. H. Angiogenic factors secreted from human ASC spheroids entrapped in an alginate-based hierarchical structure via combined 3D printing/electrospinning system. Biofabrication 2020, 12, 045028.

    Article  CAS  Google Scholar 

  127. Sun, D. H.; Chang, C.; Li, S.; Lin, L. W. Near-field electrospinning. Nano Lett. 2006, 6, 839–842.

    Article  CAS  Google Scholar 

  128. Su, Y. C.; Qiu, T.; Song, W.; Han, X. J.; Sun, M. M.; Wang, Z.; Xie, H.; Dong, M. D.; Chen, M. L. Melt electrospinning writing of magnetic microrobots. Adv. Sci. 2021, 8, 2003177.

    Article  CAS  Google Scholar 

  129. Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Direct writing by way of melt electrospinning. Adv. Mater. 2011, 23, 5651–5657.

    Article  CAS  Google Scholar 

  130. He, J. K.; Xu, F. Y.; Cao, Y.; Liu, Y. X.; Li, D. C. Towards microscale electrohydrodynamic three-dimensional printing. J. Phys. D: Appl. Phys. 2016, 49, 055504.

    Article  Google Scholar 

  131. Park, Y. S.; Kim, J.; Oh, J. M.; Park, S.; Cho, S.; Ko, H.; Cho, Y. K. Near-field electrospinning for three-dimensional stacked nano-architectures with high aspect ratios. Nano Lett. 2020, 20, 441–448.

    Article  CAS  Google Scholar 

  132. Rahmati, M.; Mills, D. K.; Urbanska, A. M.; Saeb, M. R.; Venugopal, J. R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721.

    Article  CAS  Google Scholar 

  133. Wu, T.; Huang, C.; Li, D. W.; Yin, A. L.; Liu, W.; Wang, J.; Chen, J. F.; Ei-Hamshary, H.; Al-Deyab, S. S.; Mo, X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf. B: Biointerf. 2015, 133, 179–188.

    Article  CAS  Google Scholar 

  134. Lu, S. T.; Fan, X. C.; Wang, H. N.; Zhao, Y. L.; Zhao, W. C.; Li, M. Z.; Lv, R. Y.; Wang, T.; Sun, T. D. Synthesis of gelatin-based dual-targeted nanoparticles of betulinic acid for antitumor therapy. ACS Appl. Bio Mater. 2020, 3, 3518–3525.

    Article  CAS  Google Scholar 

  135. Ugarte-Berzal, E.; Vandooren, J.; Bailón, E.; Opdenakker, G.; García-Pardo, A. Inhibition of MMP-9-dependent degradation of gelatin, but not other MMP-9 substrates, by the MMP-9 hemopexin domain blades 1 and 4. J. Biol. Chem. 2016, 291, 11751–11760.

    Article  CAS  Google Scholar 

  136. Zhao, X.; Sun, X. M.; Yildirimer, L.; Lang, Q.; Lin, Z. Y.; Zheng, R.; Zhang, Y. G.; Cui, W. G.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66–77.

    Article  CAS  Google Scholar 

  137. Wen, P.; Zong, M. H.; Linhardt, R. J.; Feng, K.; Wu, H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci. Technol. 2017, 70, 56–68.

    Article  CAS  Google Scholar 

  138. Hou, Z. Y.; Li, X. J.; Li, C. X.; Dai, Y. L.; Ma, P. A.; Zhang, X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. Electrospun upconversion composite fibers as dual drugs delivery system with individual release properties. Langmuir 2013, 29, 9473–9482.

    Article  CAS  Google Scholar 

  139. Zhang, Z. Y.; Liu, S.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Jing, X. B.; Chen, X. S.; Huang, Y. B. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release 2016, 235, 125–133.

    Article  CAS  Google Scholar 

  140. Honarbakhsh, S.; Guenther, R. H.; Willoughby, J. A.; Lommel, S. A.; Pourdeyhimi, B. Polymeric systems incorporating plant viral nanoparticles for tailored release of therapeutics. Adv. Healthc. Mater. 2013, 2, 1001–1007.

    Article  CAS  Google Scholar 

  141. Han, J. P.; Liang, C. Y.; Cui, Y. C.; Xiong, L. K.; Guo, X. C.; Yuan, X. Y.; Yang, D. Y. Encapsulating microorganisms inside electrospun microfibers as a living material enables room-temperature storage of microorganisms. ACS Appl. Mater. Interfaces 2018, 10, 38799–38806.

    Article  CAS  Google Scholar 

  142. Zussman, E. Encapsulation of cells within electrospun fibers. Polym. Adv. Technol. 2011, 22, 366–371.

    Article  CAS  Google Scholar 

  143. Letnik, I.; Avrahami, R.; Rokem, J. S.; Greiner, A.; Zussman, E.; Greenblatt, C. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules 2015, 16, 3322–3328.

    Article  CAS  Google Scholar 

  144. Bao, Z. T.; Xian, C. H.; Yuan, Q. J.; Liu, G. T.; Wu, J. Natural polymer-based hydrogels with enhanced mechanical performances: Preparation, structure, and property. Adv. Healthc. Mater. 2019, 8, 1900670.

    Article  Google Scholar 

  145. Lai, H. J.; Kuan, C. H.; Wu, H. C.; Tsai, J. C.; Chen, T. M.; Hsieh, D. J.; Wang, T. W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014, 10, 4156–4166.

    Article  CAS  Google Scholar 

  146. Yau, W. W. Y.; Long, H. Y.; Gauthier, N. C.; Chan, J. K. Y.; Chew, S. Y. The effects of nanofiber diameter and orientation on siRNA uptake and gene silencing. Biomaterials 2015, 37, 94–106.

    Article  CAS  Google Scholar 

  147. Zhou, F.; Jia, X. L.; Yang, Y.; Yang, Q. M.; Gao, C.; Hu, S. L.; Zhao, Y. H.; Fan, Y. B.; Yuan, X. Y. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater. 2016, 43, 303–313.

    Article  CAS  Google Scholar 

  148. Liao, I. C.; Chen, S. L.; Liu, J. B.; Leong, K. W. Sustained viral gene delivery through core-shell fibers. J. Control. Release 2009, 139, 48–55.

    Article  CAS  Google Scholar 

  149. Wang, X. C.; Lv, F.; Li, T.; Han, Y. M.; Yi, Z. F.; Liu, M. Y.; Chang, J.; Wu, C. T. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano 2017, 11, 11337–11349.

    Article  CAS  Google Scholar 

  150. Cheng, G.; Yin, C. C.; Tu, H.; Jiang, S.; Wang, Q.; Zhou, X.; Xing, X.; Xie, C. Y.; Shi, X. W.; Du, Y. M. et al. Controlled Co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano 2019, 13, 6372–6382.

    Article  CAS  Google Scholar 

  151. Chen, W. M.; Chen, S.; Morsi, Y.; El-Hamshary, H.; El-Newhy, M.; Fan, C. Y.; Mo, X. M. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 24415–24425.

    Article  CAS  Google Scholar 

  152. Liu, Y.; Zhou, S. Y.; Gao, Y. L.; Zhai, Y. L. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci. 2019, 14, 130–143.

    Article  Google Scholar 

  153. Yan, X.; Yu, M.; Ramakrishna, S.; Russell, S. J.; Long, Y. Z. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale 2019, 11, 19166–19178.

    Article  CAS  Google Scholar 

  154. Nicholas, M. N.; Jeschke, M. G.; Amini-Nik, S. Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Eng. Part A 2016, 22, 754–764.

    Article  CAS  Google Scholar 

  155. Dai, X. Z.; Kathiria, K.; Huang, Y. C. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering. Biofabrication 2014, 6, 035005.

    Article  CAS  Google Scholar 

  156. Millán-Rivero, J. E.; Martínez, C. M.; Romecín, P. A.; AznarCervantes, S. D.; Carpes-Ruiz, M.; Cenis, J. L.; Moraleda, J. M.; Atucha, N. M.; García-Bernal, D. Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res. Ther. 2019, 10, 126.

    Article  Google Scholar 

  157. Ju, Y. M.; Choi, J. S.; Atala, A.; Yoo, J. J.; Lee, S. J. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 2010, 31, 4313–4321.

    Article  CAS  Google Scholar 

  158. Norouzi, S. K.; Shamloo, A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater. Sci. Eng.: C 2019, 94, 1067–1076.

    Article  CAS  Google Scholar 

  159. Ye, L.; Cao, J.; Chen, L. M.; Geng, X.; Zhang, A. Y.; Guo, L. R.; Gu, Y. Q.; Feng, Z. G. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J. Biomed. Mater. Res. Part A 2015, 103, 3863–3871.

    Article  CAS  Google Scholar 

  160. Dejob, L.; Toury, B.; Tadier, S.; Grémillard, L.; Gaillard, C.; Salles, V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater. 2021, 123, 123–153.

    Article  CAS  Google Scholar 

  161. Szurkowska, K.; Kolmas, J. Hydroxyapatites enriched in silicon — Bioceramic materials for biomedical and pharmaceutical applications. Prog. Nat. Sci.: Mater. Int. 2017, 27, 401–409.

    Article  CAS  Google Scholar 

  162. Bas, O.; De-Juan-Pardo, E. M.; Meinert, C.; D’Angella, D.; Baldwin, J. G.; Bray, L. J.; Wellard, R. M.; Kollmannsberger, S.; Rank, E.; Werner, C. et al. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 2017, 9, 025014.

    Article  Google Scholar 

  163. Bas, O.; Lucarotti, S.; Angella, D. D.; Castro, N. J.; Meinert, C.; Wunner, F. M.; Rank, E.; Vozzi, G.; Klein, T. J.; Catelas, I. et al. Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chem. Eng. J. 2018, 340, 15–23.

    Article  CAS  Google Scholar 

  164. Chen, H. L.; de Botelho Ferreira Braga Malheiro, A.; van Blitterswijk, C.; Mota, C.; Wieringa, P. A.; Moroni, L. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 38187–38200.

    Article  CAS  Google Scholar 

  165. Ghosh, S. K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S. D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166–175.

    Article  CAS  Google Scholar 

  166. Zhang, J.; Zhao, Y. T.; Hu, P. Y.; Liu, J. J.; Liu, X. F.; Hu, M. Z.; Cui, Z. M.; Wang, N.; Niu, Z. Y.; Xiang, H. F. et al. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chem. Eng. J. 2020, 395, 125089.

    Article  CAS  Google Scholar 

  167. Lee, J. K. Y.; Chen, N.; Peng, S. J.; Li, L. L.; Tian, L. L.; Thakor, N.; Ramakrishna, S. Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog. Polym. Sci. 2018, 86, 40–84.

    Article  CAS  Google Scholar 

  168. Sonseca, A.; Sahay, R.; Stepien, K.; Bukala, J.; Wcislek, A.; McClain, A.; Sobolewski, P.; Sui, X. M.; Puskas, J. E.; Kohn, J. et al. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Mater. Sci. Eng.: C 2020, 108, 110505.

    Article  CAS  Google Scholar 

  169. Allafchian, A.; Hosseini, H.; Ghoreishi, S. M. Electrospinning of PVA-carboxymethyl cellulose nanofibers for flufenamic acid drug delivery. Int. J. Biol. Macromol. 2020, 163, 1780–1786.

    Article  CAS  Google Scholar 

  170. Choi, E. S.; Kim, H. C.; Muthoka, R. M.; Panicker, P. S.; Agumba, D. O.; Kim, J. Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber — Polyvinyl alcohol and its vibration energy harvesting. Compos. Sci. Technol. 2021, 209, 108795.

    Article  CAS  Google Scholar 

  171. Yao, T. Y.; Chen, H. L.; Samal, P.; Giselbrecht, S.; Baker, M. B.; Moroni, L. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Mater. Des. 2019, 168, 107614.

    Article  CAS  Google Scholar 

  172. Xie, S.; Zeng, Y. C. Effects of electric field on multineedle electrospinning: Experiment and simulation study. Ind. Eng. Chem. Res. 2012, 51, 5336–5345.

    Article  CAS  Google Scholar 

  173. Yang, Y.; Jia, Z. D.; Li, Q.; Hou, L.; Liu, J. N.; Wang, L. M.; Guan, Z. C.; Zahn, M. A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1592–1601.

    Article  Google Scholar 

  174. Zhang, X. Q.; Wu, J.; Wang, J. T.; Zhang, J.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. Highly conductive PEDOT:PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Solar Energy Mater. Solar Cells 2016, 144, 143–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the funding from Medical Scientific Research Foundation of Guangdong Province (No. A2021093), Science and Technology Planning Project of Shenzhen Municipality (No. YJ20180306174831458), Shenzhen Basic Research Project (No. JCYJ20190807155801657), National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2018ZX10301402), Key International (Regional) Joint Research Program of China (No. 5181001045), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06S029), and the National Natural Science Foundation of China (No. 51973243), China Postdoctoral Science Foundation (No. 2019M663246), the Fundamental Research Funds for the Central Universities (Nos. 191gzd35 and 20ykpy15), and Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110686).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wu or Jianhang Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Huang, J., Wu, J. et al. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 15, 787–804 (2022). https://doi.org/10.1007/s12274-021-3593-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3593-7

Keywords

Navigation