Skip to main content

Techniques to Fabricate Electrospun Nanofibers for Controlled Release of Drugs and Biomolecules

  • Chapter
  • First Online:
Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

Abstract

Electrospinning is a nanotechnology-based platform with great potential in tissue engineering and related biomedical applications. The high surface-to-volume ratio of nanofibers makes them ideal candidates for the controlled delivery of drugs and biomolecules. The successful loading of multiple drugs and their controlled and sustained release at the targeted sites renders them suitable for guided tissue engineering applications. This chapter provides an overview of the electrospinning process and its advanced modification for successful encapsulation of drugs, biomolecules, and gene products to develop nanofiber-based therapeutic systems for biomedical applications, particularly focusing on the repair and regeneration of tissues. The gaps in the field and opportunities for future research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac-DEX:

Acetylated dextran

BMP-2:

Bone morphogenic protein-2

BSA:

Bovine serum albumin

DDS:

Drug delivery system

EGF:

Epidermal growth factor

FDA:

Food and drug association

HA:

Hydroxyapatite

MMP:

Matrix metalloprotein

NaAlg:

Sodium alginate

PCE:

Poly(ε-caprolactone)-co-poly(ethylene glycol)

PCE:

Polycarboxylate

PCL:

Poly (ε-caprolactone)

PDGF:

Platelet-derived growth factors

PdLA:

Poly(D, L-lactide)

PDLLA:

Poly(D, L-lactic acid)

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethylenimine)

PEO:

Poly(ethylene oxide)

PGA:

Poly(glycolic acid)

PHBV:

Poly(hydroxybutyrate-co-hydroxyvalerate)

PLA:

Poly(lactic acid)

PLCL:

Poly(l-lactide-co- ε-caprolactone)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly (l-lactic acid)

PU:

Polyurethane

PVA:

Poly(vinyl alcohol)

PVP:

Polyvinylpyrrolidone

VEGF:

Vascular endothelial growth factors

References

  1. Shahriar SS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee Y-K (2019) Electrospinning nanofibers for therapeutics delivery. Nanomaterials 9:532

    CAS  Google Scholar 

  2. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    CAS  Google Scholar 

  3. Islam MS, Ang BC, Andriyana A, Afifi AM (2019) A review on fabrication of nanofibers via electrospinning and their applications. SN Appl Sci 1:1–16

    Google Scholar 

  4. Vlachou M, Siamidi A, Kyriakou S (2019) Electrospinning and drug delivery. Electrospinning and electrospraying-techniques and applications, pp 1–22

    Google Scholar 

  5. Amna R, Ali K, Malik M, Shamsah SI, Narayana VL, Gopi AP et al (2020) A brief review of electrospinning of polymer nanofibers: history and main applications. J New Mater Electrochem Syst 23:151–163

    CAS  Google Scholar 

  6. Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H et al (2019) Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 24:834

    Google Scholar 

  7. Wang B, Wang Y, Yin T, Yu Q (2010) Applications of electrospinning technique in drug delivery. Chem Eng Commun 197:1315–1338

    CAS  Google Scholar 

  8. Sill TJ, Von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    CAS  Google Scholar 

  9. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    CAS  Google Scholar 

  10. Bayrak E (2022) Nanofibers: production, characterization, and tissue engineering applications. 21st century nanostructured materials: physics, chemistry, classification, and emerging applications in industry, biomedicine, and agriculture, p 265

    Google Scholar 

  11. Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11:014108

    Google Scholar 

  12. Kleivaitė V, Milašius R (2018) Electrospinning–100 years of investigations and still open questions of web structure estimination. AUTEX Res J 18:398–404

    Google Scholar 

  13. Li Z, Wang C (2013) One-dimensional nanostructures: electrospinning technique and unique nanofibers. Springer

    Google Scholar 

  14. Aytac Z, Uyar T (2022) Electrospun nanofibers for drug delivery applications. Appl Polym Nanofibers:202–254

    Google Scholar 

  15. Contreras-Cáceres R, Cabeza L, Perazzoli G, Díaz A, López-Romero JM, Melguizo C et al (2019) Electrospun nanofibers: recent applications in drug delivery and cancer therapy. Nanomaterials 9:656

    Google Scholar 

  16. Gizaw M, Faglie A, Pieper M, Poudel S, Chou S-F (2019) The role of electrospun fiber scaffolds in stem cell therapy for skin tissue regeneration. Med One:4

    Google Scholar 

  17. Aytac Z, Uyar T (2018) Applications of core-shell nanofibers: drug and biomolecules release and gene therapy. Core-shell nanostructures for drug delivery and theranostics. Elsevier, pp 375–404

    Google Scholar 

  18. Ding Y, Li W, Zhang F, Liu Z, Zanjanizadeh Ezazi N, Liu D et al (2019) Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv Funct Mater 29:1802852

    Google Scholar 

  19. Erdem R, Sancak E (2014) Functionalization techniques for electrospun nanofibers for drug delivery applications: a review. Usak Univ J Mater Sci 3:180

    CAS  Google Scholar 

  20. Kanmaz D, Toprakci HAK, Olmez H, Toprakci O (2018) Electrospun polylactic acid based nanofibers for biomedical applications. Mater Sci Res India 15:224–240

    CAS  Google Scholar 

  21. Haghighat Bayan MA, Afshar Taromi F, Lanzi M, Pierini F (2021) Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells. Sci Rep 11:1–11

    Google Scholar 

  22. Liang J, Zhao H, Yue L, Fan G, Li T, Lu S et al (2020) Recent advances in electrospun nanofibers for supercapacitors. J Mater Chem A 8:16747–16789

    CAS  Google Scholar 

  23. Halicka K, Cabaj J (2021) Electrospun nanofibers for sensing and biosensing applications – a review. Int J Mol Sci 22:6357

    CAS  Google Scholar 

  24. Lobo AO, Afewerki S, De Paula MMM, Ghannadian P, Marciano FR, Zhang YS et al (2018) Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomedicine 13:7891

    CAS  Google Scholar 

  25. Grant R, Hallett J, Forbes S, Hay D, Callanan A (2019) Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 9:1–12

    Google Scholar 

  26. Zhang C, Feng F, Zhang H (2018) Emulsion electrospinning: fundamentals, food applications and prospects. Trends Food Sci Technol 80:175–186

    CAS  Google Scholar 

  27. Zhao P, Soin N, Prashanthi K, Chen J, Dong S, Zhou E et al (2018) Emulsion electrospinning of polytetrafluoroethylene [PTFE] nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl Mater Interfaces 10:5880–5891

    CAS  Google Scholar 

  28. Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad A et al (2017) Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. RSC Adv 7:28951–28964

    CAS  Google Scholar 

  29. Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17

    CAS  Google Scholar 

  30. Lee S, Jin G, Jang J-H (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:1–19

    Google Scholar 

  31. Luraghi A, Peri F, Moroni L (2021) Electrospinning for drug delivery applications: a review. J Control Release 334:463–484

    CAS  Google Scholar 

  32. Buzgo M, Mickova A, Rampichova M, Doupnik M (2018) Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. Core-shell nanostructures for drug delivery and theranostics. Elsevier, pp 325–347

    Google Scholar 

  33. Han D, Steckl AJ (2019) Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem 84:1453–1497

    CAS  Google Scholar 

  34. Li M, Zheng Y, Xin B, Xu Y (2020) Coaxial electrospinning: jet motion, core–shell fiber morphology, and structure as a function of material parameters. Ind Eng Chem Res 59:6301–6308

    CAS  Google Scholar 

  35. Li J, Liu Y, Abdelhakim HE (2022) Drug delivery applications of coaxial electrospun nanofibres in cancer therapy. Molecules 27:1803

    CAS  Google Scholar 

  36. Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK et al (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:654–677

    CAS  Google Scholar 

  37. Yarin A (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol 22:310–317

    CAS  Google Scholar 

  38. Xu X, Zhuang X, Chen X, Wang X, Yang L, Jing X (2006) Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 27:1637–1642

    CAS  Google Scholar 

  39. Şener AG, Altay AS, Altay F (eds) (2011) Effect of voltage on morphology of electrospun nanofibers. 2011 7th international conference on electrical and electronics engineering [ELECO]. IEEE

    Google Scholar 

  40. Rodoplu D, Mutlu M (2012) Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J Eng Fibers Fabr 7:155892501200700217

    Google Scholar 

  41. Zargham S, Bazgir S, Tavakoli A, Rashidi AS, Damerchely R (2012) The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics 7:155892501200700414

    Google Scholar 

  42. Singh YP, Dasgupta S, Nayar S, Bhaskar R (2020) Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J Biomater Sci Polym Ed 31:781–803

    CAS  Google Scholar 

  43. Cleeton C, Keirouz A, Chen X, Radacsi N (2019) Electrospun nanofibers for drug delivery and biosensing. ACS Biomater Sci Eng 5:4183–4205

    CAS  Google Scholar 

  44. Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A et al (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018:1

    Google Scholar 

  45. Tarus B, Fadel N, Al-Oufy A, El-Messiry M (2016) Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly [vinyl chloride] nanofiber mats. Alex Eng J 55:2975–2984

    Google Scholar 

  46. Ismail R, Torfifard J (2018) Polymer concentration effect on nanofiber growth using pulsed electrospinning. Arch de Medicina 4:14

    Google Scholar 

  47. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text Res J 83:606–617

    Google Scholar 

  48. Akkoyun S, Öktem N (2021) Effect of viscoelasticity in polymer nanofiber electrospinning: simulation using FENE-CR model. Eng Sci Technol Int J 24:620–630

    Google Scholar 

  49. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15

    CAS  Google Scholar 

  50. Yan B, Zhang Y, Li Z, Zhou P, Mao Y (2022) Electrospun nanofibrous membrane for biomedical application. SN Applied Sciences 4:1–19

    Google Scholar 

  51. Opálková Šišková A, Bučková M, Kroneková Z, Kleinová A, Nagy Š, Rydz J et al (2021) The drug-loaded electrospun poly [ε-Caprolactone] mats for therapeutic application. Nanomaterials 11:922

    Google Scholar 

  52. Oktay B, Eroğlu GÖ, Demir S, Kuruca SE, Apohan NK (2022) Poly [lactic acid] nanofibers containing phosphorylcholine grafts for transdermal drug delivery systems. Mater Today Sustain 18:100132

    Google Scholar 

  53. Panda BP, Wei MX, Shivashekaregowda NKH, Patnaik S (2020) Design, fabrication and characterization of PVA/PLGA electrospun nanofibers carriers for improvement of drug delivery of gliclazide in type-2 diabetes. Multidiscip Digital Publ Inst Proc 78:14

    Google Scholar 

  54. Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X (2013) Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly [lactic-co-glycolic acid] composite nanofibers. Colloids Surf B Biointerfaces 110:148–155

    CAS  Google Scholar 

  55. Gao X, Han S, Zhang R, Liu G, Wu J (2019) Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B 7:7075–7089

    CAS  Google Scholar 

  56. Blackstone BN, Gallentine SC, Powell HM (2021) Collagen-based electrospun materials for tissue engineering: a systematic review. Bioengineering 8:39

    CAS  Google Scholar 

  57. Hernández-Rangel A, Martin-Martinez ES (2021) Collagen based electrospun materials for skin wounds treatment. J Biomed Mater Res A 109:1751–1764

    Google Scholar 

  58. Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29:834–843

    CAS  Google Scholar 

  59. Meng W, Kim S-Y, Yuan J, Kim JC, Kwon OH, Kawazoe N et al (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18:81–94

    Google Scholar 

  60. Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromolecules 8:594–601

    CAS  Google Scholar 

  61. Shokraei S, Mirzaei E, Shokraei N, Derakhshan MA, Ghanbari H, Faridi-Majidi R (2021) Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. J Appl Polym Sci 138:50547

    CAS  Google Scholar 

  62. Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S et al (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157

    CAS  Google Scholar 

  63. Mahdian-Dehkordi M, Sarrafzadeh-Rezaei F, Razi M, Mahmoudian M (eds) (2021) Fabrication of chitosan-based electrospun nanofiber scaffold: amplification of biomechanical properties, structural stability, and seeded cell viability. Veterinary Research Forum; Faculty of Veterinary Medicine, Urmia University, Urmia

    Google Scholar 

  64. Zhang J-G, Mo X-M (2013) Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Front Mater Sci 7:129–142

    CAS  Google Scholar 

  65. Keirouz A, Zakharova M, Kwon J, Robert C, Koutsos V, Callanan A et al (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C 112:110939

    CAS  Google Scholar 

  66. Mejía-Suaza ML, Moncada ME, Ossa-Orozco CP (2020) Characterization of electrospun silk fibroin scaffolds for bone tissue engineering: a review. TecnoLógicas 23:228–246

    Google Scholar 

  67. Furuno K, Wang J, Suzuki K, Nakahata M, Sakai S (2020) Gelatin-based electrospun fibers insolubilized by horseradish peroxidase-catalyzed crosslinking for biomedical applications. ACS Omega 5:21254–21259

    CAS  Google Scholar 

  68. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH et al (2009) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4:044106

    Google Scholar 

  69. Balasubramanian P, Prabhakaran MP, Kai D, Ramakrishna S (2013) Human cardiomyocyte interaction with electrospun fibrinogen/gelatin nanofibers for myocardial regeneration. J Biomater Sci Polym Ed 24:1660–1675

    CAS  Google Scholar 

  70. Pezeshki-Modaress M, Zandi M, Rajabi S (2018) Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study. Prog Biomater 7:207–218

    CAS  Google Scholar 

  71. Mokhena TC, Mochane MJ, Mtibe A, John MJ, Sadiku ER, Sefadi JS (2020) Electrospun alginate nanofibers toward various applications: a review. Materials 13:934

    CAS  Google Scholar 

  72. Hu W-W, Lin C-H, Hong Z-J (2019) The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr Polym 206:70–79

    CAS  Google Scholar 

  73. Hajiali H, Summa M, Russo D, Armirotti A, Brunetti V, Bertorelli R et al (2016) Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4:1686–1695

    CAS  Google Scholar 

  74. Yu C-C, Chang J-J, Lee Y-H, Lin Y-C, Wu M-H, Yang M-C et al (2013) Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett 93:133–136

    CAS  Google Scholar 

  75. Khandaker M, Nomhwange H, Progri H, Nikfarjam S, Vaughan MB (2022) Evaluation of Polycaprolactone electrospun nanofiber-composites for artificial skin based on dermal fibroblast culture. Bioengineering 9:19

    CAS  Google Scholar 

  76. Ren K, Wang Y, Sun T, Yue W, Zhang H (2017) Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C 78:324–332

    CAS  Google Scholar 

  77. Rubert M, Dehli J, Li Y-F, Taskin MB, Xu R, Besenbacher F et al (2014) Electrospun PCL/PEO coaxial fibers for basic fibroblast growth factor delivery. J Mater Chem B 2:8538–8546

    CAS  Google Scholar 

  78. Muniyandi P, Palaninathan V, Veeranarayanan S, Ukai T, Maekawa T, Hanajiri T et al (2020) ECM mimetic electrospun porous poly [l-lactic acid][PLLA] scaffolds as potential substrates for cardiac tissue engineering. Polymers 12:451

    CAS  Google Scholar 

  79. Jia X, Zhao C, Li P, Zhang H, Huang Y, Li H et al (2011) Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering. J Biomater Sci Polym Ed 22:1811–1827

    CAS  Google Scholar 

  80. Jiang Y-N, Mo H-Y, Yu D-G (2012) Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm 438:232–239

    CAS  Google Scholar 

  81. Manuel CBJ, Jesús VGL, Aracely SM (2016) Electrospinning for drug delivery systems: drug incorporation techniques. Electrospinning-Mater Tech Biomed Appl 14

    Google Scholar 

  82. Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1:11513–11528

    CAS  Google Scholar 

  83. Martínez-Pérez CA (2020) Electrospinning: a promising technique for drug delivery systems. Rev Adv Mater Sci 59:441–454

    Google Scholar 

  84. Feng X, Li J, Zhang X, Liu T, Ding J, Chen X (2019) Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 302:19–41

    CAS  Google Scholar 

  85. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z et al (2011) Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 28:1259–1272

    CAS  Google Scholar 

  86. Nie H, Soh BW, Fu YC, Wang CH (2008) Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng 99:223–234

    CAS  Google Scholar 

  87. Nie H, Wang C-H (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120:111–121

    CAS  Google Scholar 

  88. Smith S, Goodge K, Delaney M, Struzyk A, Tansey N, Frey M (2020) A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers. Nanomaterials 10:2142

    CAS  Google Scholar 

  89. Rather AH, Khan RS, Wani TU, Beigh MA, Sheikh FA (2022) Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol Bioeng 119:9–33

    CAS  Google Scholar 

  90. Wu R, Gao G, Xu Y (2020) Electrospun fibers immobilized with BMP-2 mediated by polydopamine combined with autogenous tendon to repair developmental dysplasia of the hip in a porcine model. Int J Nanomedicine 15:6563

    CAS  Google Scholar 

  91. Lee YJ, Lee J-H, Cho H-J, Kim HK, Yoon TR, Shin H (2013) Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 34:5059–5069

    CAS  Google Scholar 

  92. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor [EGF]. Biomaterials 29:587–596

    CAS  Google Scholar 

  93. Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    CAS  Google Scholar 

  94. Sahoo S, Ang LT, Goh JCH, Toh SL (2010) Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 93:1539–1550

    Google Scholar 

  95. Asiri A, Saidin S, Sani MH, Al-Ashwal RH (2021) Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci Rep 11:1–14

    Google Scholar 

  96. Gizaw M, Thompson J, Faglie A, Lee S-Y, Neuenschwander P, Chou S-F (2018) Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering 5:9

    Google Scholar 

  97. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E et al (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13:952–962

    CAS  Google Scholar 

  98. Buzgo M, Greplová J, Soural M, Bezděková D, Míčková A, Kofroňová O et al (2015) PVA immunonanofibers with controlled decay. Polymer 77:387–398

    CAS  Google Scholar 

  99. Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    CAS  Google Scholar 

  100. Yang G, Wang J, Li L, Ding S, Zhou S (2014) Electrospun micelles/drug-loaded nanofibers for time-programmed multi-agent release. Macromol Biosci 14:965–976

    CAS  Google Scholar 

  101. Shamspur T, Fathirad F, Ghanbari M, Esmaeili Mahani S (2017) Synthesis and cytotoxicity evaluation of electrospun PVA magnetic nanofibers containing doxorubicin as targeted nanocarrier for drug delivery. Nanomed Res J 2:224–229

    CAS  Google Scholar 

  102. Maderuelo C, Zarzuelo A, Lanao JM (2011) Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 154:2–19

    CAS  Google Scholar 

  103. Luu Y, Kim K, Hsiao B, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89:341–353

    CAS  Google Scholar 

  104. Nie H, Ho M-L, Wang C-K, Wang C-H, Fu Y-C (2009) BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30:892–901

    CAS  Google Scholar 

  105. Qin X (2017) Coaxial electrospinning of nanofibers. Electrospun nanofibers. Elsevier, pp 41–71

    Google Scholar 

  106. Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 5:8241–8245

    CAS  Google Scholar 

  107. Huang W, Zou T, Li S, Jing J, Xia X, Liu X (2013) Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech 14:675–681

    CAS  Google Scholar 

  108. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG (2010) Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release 143:95–103

    CAS  Google Scholar 

  109. Liao I-C, Chen S, Liu JB, Leong KW (2009) Sustained viral gene delivery through core-shell fibers. J Control Release 139:48–55

    CAS  Google Scholar 

  110. Tian L, Prabhakaran MP, Hu J, Chen M, Besenbacher F, Ramakrishna S (2015) Coaxial electrospun poly [lactic acid]/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. RSC Adv 5:49838–49848

    CAS  Google Scholar 

  111. Yin L, Yang S, He M, Chang Y, Wang K, Zhu Y et al (2017) Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. J Mater Sci Mater Med 28:1–15

    CAS  Google Scholar 

  112. Khalf A, Madihally SV (2017) Modeling the permeability of multiaxial electrospun poly [ε-caprolactone]-gelatin hybrid fibers for controlled doxycycline release. Mater Sci Eng C 76:161–170

    CAS  Google Scholar 

  113. Nagiah N, Murdock CJ, Bhattacharjee M, Nair L, Laurencin CT (2020) Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications. Sci Rep 10:1–11

    Google Scholar 

  114. Buzgo M, Rampichova M, Vocetkova K, Sovkova V, Lukasova V, Doupnik M et al (2017) Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv 7:1215–1228

    CAS  Google Scholar 

  115. Zhao Q, Wang M (2016) Strategies to incorporate polyelectrolyte in emulsion electrospun nanofibrous tissue engineering scaffolds for modulating growth factor release from the scaffolds. Mater Lett 162:48–52

    CAS  Google Scholar 

  116. Hu J, Prabhakaran MP, Ding X, Ramakrishna S (2015) Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties. J Biomater Sci Polym Ed 26:57–75

    CAS  Google Scholar 

  117. Camerlo A, Bühlmann-Popa A, Vebert-Nardin C, Rossi RM, Fortunato G (2014) Environmentally controlled emulsion electrospinning for the encapsulation of temperature-sensitive compounds. J Mater Sci 49:8154–8162

    CAS  Google Scholar 

  118. Hu J, Prabhakaran MP, Tian L, Ding X, Ramakrishna S (2015) Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv 5:100256–100267

    CAS  Google Scholar 

  119. Qi H, Hu P, Xu J, Wang A (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 7:2327–2330

    CAS  Google Scholar 

  120. McClellan P, Landis WJ (2016) Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. BioResearch 5:212–227

    CAS  Google Scholar 

  121. Kurpanik R, Lechowska-Liszka A, Mastalska-Popławska J, Nocuń M, Rapacz-Kmita A, Ścisłowska-Czarnecka A et al (2022) Effect of ionic and non-ionic surfactant on bovine serum albumin encapsulation and biological properties of emulsion-electrospun fibers. Molecules 27:3232

    CAS  Google Scholar 

  122. Frizzell H, Ohlsen TJ, Woodrow KA (2017) Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics. Int J Pharm 533:99–110

    CAS  Google Scholar 

  123. Zhao Q, Lu WW, Wang M (2017) Modulating the release of vascular endothelial growth factor by negative-voltage emulsion electrospinning for improved vascular regeneration. Mater Lett 193:1–4

    CAS  Google Scholar 

  124. Zhou Y, Zhao Q, Wang M (2019) Dual release of VEGF and PDGF from emulsion electrospun bilayer scaffolds consisting of orthogonally aligned nanofibers for gastrointestinal tract regeneration. MRS Commun 9:1098–1104

    CAS  Google Scholar 

  125. Park KE, Kim BS, Kim MH, You HK, Lee J, Park WH (2015) Basic fibroblast growth factor-encapsulated PCL nano/microfibrous composite scaffolds for bone regeneration. Polymer 76:8–16

    CAS  Google Scholar 

  126. Briggs T, Arinzeh TL (2014) Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers. J Biomed Mater Res A 102:674–684

    Google Scholar 

  127. Theron S, Zussman E, Yarin A (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    CAS  Google Scholar 

  128. Xie S, Zeng Y (2012) Effects of electric field on multineedle electrospinning: experiment and simulation study. Ind Eng Chem Res 51:5336–5345

    CAS  Google Scholar 

  129. Yang Y, Jia Z, Li Q, Hou L, Liu J, Wang L et al (2010) A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans Dielectr Electr Insul 17:1592–1601

    Google Scholar 

  130. Yarin A, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45:2977–2980

    CAS  Google Scholar 

  131. Wei L, Liu C, Mao X, Dong J, Fan W, Zhi C et al (2019) Multiple-jet needleless electrospinning approach via a linear flume spinneret. Polymers 11:2052

    CAS  Google Scholar 

  132. Niu H, Wang X, Lin T (2011) Needleless electrospinning: developments and performances. Nanofibers-production, properties and functional applications, pp 17–36

    Google Scholar 

  133. Buzgo M, Filova E, Staffa AM, Rampichova M, Doupnik M, Vocetkova K et al (2018) Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J Tissue Eng Regen Med 12:583–597

    CAS  Google Scholar 

  134. Pejchar K, Vyslouzilova L, Beran J, Lukas D, Bilek M, Pokorny P (eds) (2013) The slit needleless electrode for the electrospinning. Proceedings of the 5th international conference of nanocon

    Google Scholar 

  135. Wei L, Sun R, Liu C, Xiong J, Qin X (2019) Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater Des 179:107885

    Google Scholar 

  136. Wang X, Wang X, Lin T (2012) Electric field analysis of spinneret design for needleless electrospinning of nanofibers. J Mater Res 27:3013–3019

    CAS  Google Scholar 

  137. Forward KM, Flores A, Rutledge GC (2013) Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci 104:250–259

    CAS  Google Scholar 

  138. Subrahmanya T, Arshad AB, Lin PT, Widakdo J, Makari H, Austria HFM et al (2021) A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 11:9638–9663

    Google Scholar 

  139. Borteh HM, Gallovic MD, Sharma S, Peine KJ, Miao S, Brackman DJ et al (2013) Electrospun acetalated dextran scaffolds for temporal release of therapeutics. Langmuir 29:7957–7965

    CAS  Google Scholar 

  140. Heunis TD, Smith C, Dicks LM (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935

    CAS  Google Scholar 

  141. Garrett R, Niiyama E, Kotsuchibashi Y, Uto K, Ebara M (2015) Biodegradable nanofiber for delivery of immunomodulating agent in the treatment of basal cell carcinoma. Fibers 3:478–490

    CAS  Google Scholar 

  142. Basha RY, Sampath Kumar T, Doble M (2017) Electrospun nanofibers of curdlan [β-1, 3 glucan] blend as a potential skin scaffold material. Macromol Mater Eng 302:1600417

    Google Scholar 

  143. Wistlich L, Kums J, Rossi A, Heffels KH, Wajant H, Groll J (2017) Multimodal bioactivation of hydrophilic electrospun nanofibers enables simultaneous tuning of cell adhesivity and immunomodulatory effects. Adv Funct Mater 27:1702903

    Google Scholar 

  144. Jain S, Meka SRK, Chatterjee K (2016) Engineering a piperine eluting nanofibrous patch for cancer treatment. ACS Biomater Sci Eng 2:1376–1385

    CAS  Google Scholar 

  145. Jain S, Meka SRK, Chatterjee K (2016) Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater 11:055007

    Google Scholar 

  146. Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y et al (2019) Recent progress in drug delivery. Acta Pharm Sin B 9:1145–1162

    Google Scholar 

  147. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR et al (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1:164–209

    Google Scholar 

  148. Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X et al (2019) Controlled co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneration. ACS Nano 13:6372–6382

    CAS  Google Scholar 

  149. Sharma A, Gupta A, Rath G, Goyal A, Mathur R, Dhakate S (2013) Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. J Mater Chem B 1:3410–3418

    CAS  Google Scholar 

  150. Lancina III MG, Shankar RK, Yang H (2017) Chitosan nanofibers for transbuccal insulin delivery. J Biomed Mater Res A 105:1252–1259

    CAS  Google Scholar 

  151. Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K (2021) Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. Polym Adv Technol 32:1924–1950

    CAS  Google Scholar 

  152. Zhang J, Duan Y, Wei D, Wang L, Wang H, Gu Z et al (2011) Co-electrospun fibrous scaffold–adsorbed DNA for substrate-mediated gene delivery. J Biomed Mater Res A 96:212–220

    Google Scholar 

  153. Stojanov S, Berlec A (2020) Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front Bioeng Biotechnol 8:130

    Google Scholar 

  154. Hu J, Wei J, Liu W, Chen Y (2013) Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning. J Biomater Sci Polym Ed 24:972–985

    CAS  Google Scholar 

  155. Ajmal G, Bonde GV, Mittal P, Khan G, Pandey VK, Bakade BV et al (2019) Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: a potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm 567:118480

    CAS  Google Scholar 

  156. Grewal H, Dhakate SR, Goyal AK, Markandeywar TS, Malik B, Rath G (2012) Development of transmucosal patch using nanofibers. Art Cells Blood Subs Biotechnol 40:146–150

    CAS  Google Scholar 

  157. Kamath SM, Sridhar K, Jaison D, Gopinath V, Ibrahim B, Gupta N et al (2020) Fabrication of tri-layered electrospun polycaprolactone mats with improved sustained drug release profile. Sci Rep 10:1–13

    Google Scholar 

  158. Hussein MAM, Guler E, Rayaman E, Cam ME, Sahin A, Grinholc M et al (2021) Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr Polym 270:118373

    Google Scholar 

  159. Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B (2021) Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics 13:1228

    CAS  Google Scholar 

  160. Snetkov P, Morozkina S, Olekhnovich R, Uspenskaya M (2022) Electrospun curcumin-loaded polymer nanofibers: solution recipes, process parameters, properties, and biological activities. Mater Adv

    Google Scholar 

  161. Chi H, Chan V, Li C, Hsieh J, Lin P, Tsai Y-H et al (2020) Fabrication of polylactic acid/paclitaxel nano fibers by electrospinning for cancer therapeutics. BMC Chem 14:1–12

    Google Scholar 

  162. Mohiti-Asli M, Saha S, Murphy S, Gracz H, Pourdeyhimi B, Atala A et al (2017) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater 105:327–339

    CAS  Google Scholar 

  163. Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S (2015) Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37:218–229

    CAS  Google Scholar 

  164. Haider A, Kim S, Huh M-W, Kang I-K (2015) BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. Biomed Res Int

    Google Scholar 

  165. Ren X, Liu Q, Zheng S, Zhu J, Qi Z, Fu C et al (2018) Synergistic delivery of bFGF and BMP-2 from poly [l-lactic-co-glycolic acid]/graphene oxide/hydroxyapatite nanofibre scaffolds for bone tissue engineering applications. RSC Adv 8:31911–31923

    CAS  Google Scholar 

  166. Wang J, An Q, Li D, Wu T, Chen W, Sun B et al (2015) Heparin and vascular endothelial growth factor loaded poly [L-lactide-co-caprolactone] nanofiber covered stent-graft for aneurysm treatment. J Biomed Nanotechnol 11:1947–1960

    CAS  Google Scholar 

  167. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su L-C, Vu K et al (2013) Dual growth factor releasing multifunctional nanofibers for wound healing. Acta Biomater 9:9351–9359

    CAS  Google Scholar 

  168. Yang B, Cao G, Cai K, Wang G, Li P, Zheng L et al (2020) VEGF-modified PVA/silicone nanofibers enhance islet function transplanted in subcutaneous site followed by device-less procedure. Int J Nanomedicine 15:587

    CAS  Google Scholar 

  169. Sun H, Dong J, Wang Y, Shen S, Shi Y, Zhang L et al (2021) Polydopamine-coated poly [l-Lactide] nanofibers with controlled release of VEGF and BMP-2 as a regenerative periosteum. ACS Biomater Sci Eng 7:4883–4897

    CAS  Google Scholar 

  170. Zigdon-Giladi H, Khutaba A, Elimelech R, Machtei EE, Srouji S (2017) VEGF release from a polymeric nanofiber scaffold for improved angiogenesis. J Biomed Mater Res A 105:2712–2721

    CAS  Google Scholar 

  171. An G, Zhang W, Ma D, Lu B, Wei G, Guang Y et al (2017) Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold. Eur Rev Med Pharmacol Sci 21:2316–2328

    CAS  Google Scholar 

  172. Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S (2016) Fabrication of nerve growth factor encapsulated aligned poly [ε-caprolactone] nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers 8:54

    Google Scholar 

  173. Su X, Huang Y, Chen R, Zhang Y, He M, Lü X (2021) Metabolomics analysis of poly [l-lactic acid] nanofibers’ performance on PC12 cell differentiation. Regen Biomater 8:rbab031

    Google Scholar 

  174. Okur Z, Senturk OI, Yilmaz C, Gulseren G, Mammadov B, Guler MO et al (2018) Promotion of neurite outgrowth by rationally designed NGF-β binding peptide nanofibers. Biomater Sci 6:1777–1790

    CAS  Google Scholar 

  175. Liu C, Wang C, Zhao Q, Li X, Xu F, Yao X et al (2018) Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomed Mater 13:044107

    Google Scholar 

  176. Levengood SL, Erickson AE, Chang F-c, Zhang M (2017) Chitosan–poly [caprolactone] nanofibers for skin repair. J Mater Chem B 5:1822–1833

    CAS  Google Scholar 

  177. Norouzi M, Soleimani M (2016) EGF-loaded nanofibers for skin tissue engineering. Nanosci Dermatol:367–373

    Google Scholar 

  178. Norouzi M, Shabani I, Ahvaz HH, Soleimani M (2015) PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. J Biomed Mater Res A 103:2225–2235

    CAS  Google Scholar 

  179. Gümüşderelioğlu M, Dalkıranoğlu S, Aydın RST, Çakmak S (2011) A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res A 98:461–472

    Google Scholar 

  180. Wu P, Chen H, Jin R, Weng T, Ho JK, You C et al (2018) Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 16:1–20

    Google Scholar 

  181. Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y et al (2018) Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. Mater Sci Eng C 85:37–46

    CAS  Google Scholar 

  182. Endres T, Zheng M, Beck-Broichsitter M, Samsonova O, Debus H, Kissel T (2012) Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nanocarriers employing different preparation techniques. J Control Release 160:583–591

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support from the Department of Science and Technology (DST), Government of India, (DST/NM/NB/2018/119(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajput, M., Tyeb, S., Chatterjee, K. (2022). Techniques to Fabricate Electrospun Nanofibers for Controlled Release of Drugs and Biomolecules. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_140

Download citation

Publish with us

Policies and ethics