Skip to main content
Log in

Effects of Soil Salinity on Nitrification and Ammonia-Oxidizing Microorganisms in Coastal Reclaimed Farmland Soil

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Nitrification, which is controlled by ammonia-oxidizing archaea (AOA) and bacteria (AOB), is the key step in the nitrogen cycle. Coastal reclaimed farmland is in the conversion stage from coastal mudflat to cultivated farmland and usually suffers from soil salinization. The effects of soil salinity on nitrification and ammonia-oxidizing microorganisms in this soil are rarely reported. Soils with different salinities were collected to conduct an incubation experiment. qPCR and Illumina MiSeq sequencing were used to examine the effects of soil salinity on the abundance, diversity, and community structure of AOA and AOB. Results showed that nitrification was inhibited by increased salinity, while AOA and AOB were both inhibited by soil salinity even if the number of amoA gene copies of AOB was greater than those of AOA. With respect to community diversity, AOA and AOB communities showed a significant shift along the salinity gradient, with AOB diversity indices decreasing significantly with soil salinity, and AOA diversity indices increasing with soil salinity and then decreasing. The community structure of AOB was significantly altered by soil salinity, and the Nitrosomonas cluster increased with soil salinity. However, the effect of soil salinity on the AOA community structure was not significant. Phylogenetic analysis showed that the Nitrosophaera cluster and the Nitrosospira cluster were the predominant clusters in AOA and AOB, respectively. The conclusion could be drawn from the above results that soil salinity inhibited nitrification by suppressing the activities of ammonia-oxidizing microorganisms and influencing their community structures. Meanwhile, ammonia-oxidizing bacteria adapt to soil salinity by means of a strategy in which salt-tolerant species replace salt-intolerant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This research was funded by the National Natural Science Foundation of China (U1806215, 41977015, U1906221), the National Key Research and Development Project of China (2021YFD1900602, 2021YFC3201201), and the Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education (KF202115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yang, J., Li, Y. et al. Effects of Soil Salinity on Nitrification and Ammonia-Oxidizing Microorganisms in Coastal Reclaimed Farmland Soil. J Soil Sci Plant Nutr 22, 2743–2754 (2022). https://doi.org/10.1007/s42729-022-00841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-00841-9

Keywords

Navigation