Skip to main content

Advertisement

Log in

Structure–function relationship of α-crystallin in the context of vertebrate lens evolution and its role in eye disorders

  • Review
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

α- Crystallin, an oligomeric major constituent protein of the eye lens of vertebrates, was originally identified for its role in the lens’ transparency. In addition to having its micelle-like architecture, this protein has molecular chaperoning activity. Lens α-crystallin consists of two subunits, αA and αB, whose aggregate formation is necessary for molecular chaperoning activity. Isolation and characterization of α-crystallin from a wide range of vertebrates will help in understanding a better structure–function relationship in a broader sense, which is yet to be achieved. The stability, structure, aggregation and molecular chaperone activity of α-crystallin differ significantly from species to species. These differences clearly reflect specific structural changes of the protein, which, in turn, may contribute to the transparency and refractive power of the eye lens. Several eye diseases, such as diabetic retinopathy involve oxidative stress, followed by a decrease in total soluble lens proteins and a decreased amount of βB1 crystallins. Intraperitoneal injection of edaravone drugs, a member of the substituted 2-pyrazolin-5-one class, and its analogs are now being tried to revert back crystallin activity and inhibit hyperglycemia and oxidative stress-mediated eye cell damage. In the upcoming future, edaravone-like drugs or their analogs can be synthesized and targeted for better efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All information collated in this study was obtained from the Google search engine. Data were sourced via relevant references from different journals. There is no applicability of data sharing and no new data were generated during this study.

References

  • Andley UP, Malone JP, Hamilton PD, Ravi N, Townsend RR (2013) Comparative proteomic analysis identifies age-dependent increases in the abundance of specific proteins after deletion of the small heat shock proteins αA-and αB-crystallin. Biochemistry 52(17):2933–2948

    Article  CAS  PubMed  Google Scholar 

  • Aquilina JA, Shrestha S, Morris AM, Ecroyd H (2013) Structural and functional aspects of hetero- oligomers formed by the small heat shock proteins αB-crystallin and HSP27. J Biol Chem 288(19):13602–13609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai F, Xi J, Higashikubo R, Andley UP (2004) Cell kinetic status of mouse lens epithelial cells lacking αA-and αB-crystallin. Mol Cell Biochem 265(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117. https://doi.org/10.1016/j.tibs.2011.11.005

  • Bhattacharyya J, Das KP (1999) Molecular chaperone-like properties of an unfolded protein, αs-casein. J Biol Chem 274(22):15505–15509. https://doi.org/10.1074/jbc.274.22.15505

  • Biswas A, Karmakar S, Banerjee V, Saha S, Kundu M, Bhattacharya J, Konar DC, Das KP (2011) Biophysical studies on the molecular chaperone function, structure and function of eye lens protein α crystallin—a Review. J Indian Chem Soc 88:1827–1855

    CAS  Google Scholar 

  • Cameron DA, Gentile KL, Middleton FA, Yurco P (2005) Gene expression profiles of intact and regenerating zebrafish retina. Mol Vis 11(775):91

    Google Scholar 

  • Carver JA, Nicholls KA, Aquilina AJ, Truscott RJ (1996) Age-related changes in bovine α-crystallin and high-molecular-weight protein. Exp Eye Res 63(6):639–647

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sagar V, Len HS, Peterson K, Fan J, Mishra S, McMurtry J, Wilmarth PA, David LL, Wistow G (2016) γ-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds. FEBS J 283(8):1516–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou SH, Chang WC, Pan FM, Chang T (1987) Physicochemical characterization of lens crystallins from the carp and biochemical comparison with other vertebrate and invertebrate crystallins. J Biochem 101(3):751–759

    Article  CAS  PubMed  Google Scholar 

  • Christopher KL, Pedler MG, Shieh B, Ammar DA, Petrash JM, Mueller NH (2014) Alpha- crystallin- mediated protection of lens cells against heat and oxidative stress-induced cell death. Biochim Biophys Acta Mol Cell Res 1843(2):309–315

    Article  CAS  Google Scholar 

  • Cobb BA, Petrash JM (2002) α-Crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry 41(2):483–490

    Article  CAS  PubMed  Google Scholar 

  • Dahlman JM, Margot KL, Ding L, Horwitz J, Posner M (2005) Zebrafish alpha-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs. Mol Vis 11:88–96

    CAS  PubMed  Google Scholar 

  • Dang W, Xu N, Zhang W, Gao J, Fan H, Lu H (2018) Differential regulation of Hsp70 expression in six lizard species under normal and high environmental temperatures. Pakistan J. Zool 50:1043–1051. https://doi.org/10.17582/journal.pjz/2018.50.3.1043.1051

    Article  CAS  Google Scholar 

  • de Jong WW, Zweers A, Versteeg M, Nuy-Terwindt EC (1984) Primary structures of the α- crystallin A chains of twenty-eight mammalian species, chicken and frog. Eur J Biochem 141(1):131–140

    Article  PubMed  Google Scholar 

  • De Jong WW, Zweers A, Versteeg M, Dessauer HC, Goodman M (1985) alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny. Mol Biol Evol 2(6):484–493. https://doi.org/10.1093/oxfordjournals.molbev.a040367

    Article  PubMed  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302(5907):415–417. https://doi.org/10.1038/302415a0

    Article  CAS  PubMed  Google Scholar 

  • Deretic D, Aebersold RH, Morrison HD, Papermaster DS (1994) Alpha A-and alpha B-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. J Biol Chem 269(24):16853–16861

    Article  CAS  PubMed  Google Scholar 

  • Eifert C, Burgio MR, Bennett PM, Salerno JC, Koretz JF (2005) N-terminal control of small heat shock protein oligomerization: changes in aggregate size and chaperone-like function. Biochim Biophys Acta Proteins Proteom 1748(2):146–156

    Article  CAS  Google Scholar 

  • Eyles SJ, Gierasch LM (2010) Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci 107(7):2727–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadool JM, Dowling JE (2008) Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res 27(1):89–110

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Tian H, Li X, Jin D, Li X, Kong J, Yang C, Yang X, Lu Y, Luo Y, Lin B (2017) Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE 12(4):e0175050

    Article  PubMed  PubMed Central  Google Scholar 

  • Fittipaldi S, Mercatelli N, Dimauro I, Jackson MJ, Paronetto MP, Caporossi D (2015) Alpha B- crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism. Free Radical Biol Med 86:331–342

    Article  CAS  Google Scholar 

  • Fort PE, Lampi KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92(2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Fort PE, Freeman WM, Losiewicz MK, Singh RS, Gardner TW (2009) The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin* S. Mol Cell Proteomics 8(4):767–779. https://doi.org/10.1074/mcp.M800326-MCP200

  • Ghahghaei A, Rekas A, Carver JA, Augusteyn RC (2009) Structure/function studies of dogfish α- crystallin, comparison with bovine α-crystallin. Mol Vis 15:2411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goishi K, Shimizu A, Najarro G, Watanabe S, Rogers R, Zon LI, Klagsbrun M (2006) αA-crystallin expression prevents γ-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development 133(13):2585–2593. https://doi.org/10.1242/dev.02424

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J Mol Biol 277(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Bova MP, Huang QL, Mchaourab HS, Stewart PL (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298(2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Heikkila JJ (2017) The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles. Comp Biochem Physiol A Mol Integr Physiol 203:179–192. https://doi.org/10.1016/j.cbpa.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, McFall-Ngai M, Somero GN (1997) Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Biochemistry 36(11):3207–3215

    Article  CAS  PubMed  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci 89(21):10449–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang YS, Ko MH, Kim YM, Park YH, Ono T, Han JY (2016) The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep36704

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Kayhan FE, Duman BS (2010) Heat shock protein genes in fish. Turk J Fish Aquat Sci. https://doi.org/10.4194/trjfas.2010.0218

    Article  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394(6693):595–599

    Article  CAS  PubMed  Google Scholar 

  • Kiss AJ, Cheng CHC (2008) Molecular diversity and genomic organisation of the α, β and γ eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. CBPD 3(2):155–171

    Google Scholar 

  • Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, DeVries AL, Cheng CHC (2004) Cold- stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207(26):4633–4649

    Article  CAS  PubMed  Google Scholar 

  • Klemenz R, Fröhli E, Steiger RH, Schäfer R, AoYAMA AKIRA (1991) Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci 88(9):3652–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koteiche HA, Mchaourab HS (2002) The determinants of the oligomeric structure in Hsp16. 5 are encoded in the α-crystallin domain. FEBS Lett 519(1–3):16–22

    Article  CAS  PubMed  Google Scholar 

  • Koteiche HA, Claxton DP, Mishra S, Stein RA, McDonald ET, Mchaourab HS (2015) Species- specific structural and functional divergence of α-crystallins: zebrafish αBa-and rodent αAins-crystallin encode activated chaperones. Biochemistry 54(38):5949–5958

    Article  CAS  PubMed  Google Scholar 

  • Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ, Reddy GB (2005) Elevated expression of αA and αB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys 444(2):77–83. https://doi.org/10.1016/j.abb.2005.09.021

  • Laganowsky A, Eisenberg D (2010) Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin. Protein Sci 19(10):1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH (2013) Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Mol Vis 19:623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SF, Pan FM, Chiou SH (1995) Sequence-analysis of frog αB-crystallin cDNA: sequence homology and evolutionary comparison of αA, αB and heat shock proteins. Biochem Biophys Res Commun 216(3):881–891. https://doi.org/10.1006/bbrc.1995.2704

    Article  CAS  PubMed  Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341(6143):292–295. https://doi.org/10.1126/science.1232392

  • Masuda T, Shimazawa M, Hara H (2017) Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid Med Cell Longev. https://doi.org/10.1155/2017/9208489

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald ET, Bortolus M, Koteiche HA, Mchaourab HS (2012) Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry 51(6):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Mchaourab HS, Dodson EK, Koteiche HA (2002) Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin. J Biol Chem 277:40557–40566

    Article  CAS  PubMed  Google Scholar 

  • McMahon C, Semina EV, Link BA (2004) Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138(3):343–350

    Article  CAS  PubMed  Google Scholar 

  • Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoeckman WA, Horwitz J, Bloemendal H (1993) Structural and functional similarities of bovine α crystallin and mouse small heat-shock protein. J Biol Chem 268(2):1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Wu SY, Fuller AW, Wang Z, Rose KL, Schey KL, Mchaourab HS (2018) Loss of αB- crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart. J Biol Chem 293(2):740–753

    Article  CAS  PubMed  Google Scholar 

  • Mohanty BP, Bhattacharjee S, Das MK (2011) Lens proteome map and α-crystallin profile of the catfish Rita rita. Indian J Biochem Biophys 48:35–41

  • Mueller NH, Ammar DA, Petrash JM (2013) Cell penetration peptides for enhanced entry of αB-crystallin into lens cells. Invest Ophthalmol Vis Sci 54(1):2–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj RH, Linetsky M, Stitt AW (2012a) The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42(4):1205–1220

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj RH, Nahomi RB, Shanthakumar S, Linetsky M, Padmanabha S, Pasupuleti N, Wang B, Santhoshkumar P, Panda AK, Biswas A (2012b) Acetylation of αA-crystallin in the human lens: effects on structure and chaperone function. Biochim Biophys Acta Mol Basis Dis 1822(2):120–129

    Article  CAS  Google Scholar 

  • Nagaraj RH, Nahomi RB, Mueller NH, Raghavan CT, Ammar DA, Petrash JM (2016) Therapeutic potential of α-crystallin. Biochim Biophys Acta Gen Subj 1860(1):252–257

    Article  CAS  Google Scholar 

  • Nahomi RB, Wang B, Raghavan CT, Voss O, Doseff AI, Santhoshkumar P, Nagaraj RH (2013a) Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts. J Biol Chem 288(18):13022–13035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahomi RB, Oya-Ito T, Nagaraj RH (2013b) The combined effect of acetylation and glycation on the chaperone and anti-apoptotic functions of human α-crystallin. Biochim Biophys Acta Mol Basis Dis 1832(1):195–203

    Article  CAS  Google Scholar 

  • Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otteson DC, Tsujikawa M (2005) Genomic organization of zebrafish cone-rod homeobox gene and exclusion as a candidate gene for retinal degeneration in niezerka and mikre oko. Mol Vis 11:986

    CAS  PubMed  Google Scholar 

  • Posner M, Hawke M, LaCava C, Prince CJ, Bellanco NR, Corbin RW (2008) A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Mol Vis 14:806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posner M, Kiss AJ, Skiba J, Drossman A, Dolinska MB, Hejtmancik JF, Sergeev YV (2012) Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin. PLoS ONE 7(3):e34438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju M, Santhoshkumar P, Sharma KK (2016) Alpha-crystallin-derived peptides as therapeutic chaperones. Biochim Biophys Acta Gen Subj 1860(1):246–251

    Article  CAS  Google Scholar 

  • Rao PV, Huang QL, Horwitz J, Zigler JS Jr (1995) Evidence that α-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta Gen Subj 1245(3):439–447

    Article  Google Scholar 

  • Reddy VS, Reddy GB (2015) Emerging role for αB-crystallin as a therapeutic agent: pros and cons. Curr Mol Med 15(1):47–61

    Article  CAS  PubMed  Google Scholar 

  • Reddy GB, Das KP, Petrash JM, Surewicz WK (2000) Temperature-dependent chaperone activity and structural properties of human αA-and αB-crystallins. J Biol Chem 275(7):4565–4570

    Article  CAS  PubMed  Google Scholar 

  • Runkle S, Hill J, Kantorow M, Horwitz J, Posner M (2002) Sequence and spatial expression of zebrafish (Danio rerio) αA-crystallin. Mol Vis 8:45

    CAS  PubMed  Google Scholar 

  • Saha S, Das KP (2004) Relationship between chaperone activity and oligomeric size of recombinant human αA-and αB-crystallin: a tryptic digestion study. Proteins 57(3):610–617

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Das KP (2015) Effect of thermal treatment on the oligomeric size and chaperone activity of alpha- crystallin. J Indian Chem Soc 92(10):1531–1536

    CAS  Google Scholar 

  • Schoenberger SD, Kim SJ (2013) Nonsteroidal anti-inflammatory drugs for retinal disease. Int J Inflamm. https://doi.org/10.1155/2013/281981

    Article  Google Scholar 

  • Shiliaev NG, Selivanova OM, Galzitskaya OV (2016) Search for conserved amino acid residues of the α- crystallin proteins of vertebrates. J Bioinform Comput Biol 14(02):1641004

    Article  CAS  PubMed  Google Scholar 

  • Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22(4):367–380. https://doi.org/10.1002/pro.2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smulders RHPH, Carver JA, Lindner RA, van Boeckel MAM, Bloemendal H, Wilfried W.de Jong. (1996) Immobilization of the C-terminal extension of Bovine αA- crystallin Reduces Chaperone-like Activity. J Biol Chem 271(46):29060–29096

    Article  CAS  Google Scholar 

  • Smulders RH, van Dijk MA, Hoevenaars S, Lindner RA, Carver JA, de Jong WW (2002) The eye lens protein αA-crystallin of the blind mole rat Spalax ehrenbergi: effects of altered functional constraints. Exp Eye Res 74(2):285–291

    Article  CAS  PubMed  Google Scholar 

  • Stella DR, Floyd KA, Grey AC, Renfrow MB, Schey KL, Barnes S (2010) Tissue localization and solubilities of αA-crystallin and its numerous C-terminal truncation products in pre-and postcataractous ICR/f rat lenses. Invest Ophthalmol Vis Sci 51(10):5153–5161

    Article  PubMed  PubMed Central  Google Scholar 

  • Strickler AG, Byerly MS, Jeffery WR (2007) Lens gene expression analysis reveals downregulation of the anti- apoptotic chaperone αA-crystallin during cavefish eye degeneration. Dev Genes Evol 217(11–12):771–782

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. CMLS 62(21):2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K, Yoshikawa Y, Tanaka Y, Iwata T (2005) Molecular composition of drusen and possible involvement of anti‐retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19(12):1683–1685. https://doi.org/10.1096/fj.04-3525fje

  • Van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001a) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8(12):1025–1030

    Article  PubMed  Google Scholar 

  • Van Montfort R, Slingsby C, Vierlingt E (2001b) Structure and function of the small heat shock protein/α- crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  • Vanhoudt J, Aerts T, Abgar S, Clauwaert J (1998) Quaternary structure of bovine α-crystallin: influence of temperature. Int J Biol Macromol 22(3–4):229–237

    Article  CAS  PubMed  Google Scholar 

  • Wages P, Horwitz J, Ding L, Corbin RW, Posner M (2013) Changes in zebrafish (Danio rerio) lens crystallin content during development. Mol Vis 19:408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Spector A (1994) The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269(18):13601–13608

    Article  CAS  PubMed  Google Scholar 

  • Whiston EA, Sugi N, Kamradt MC, Sack C, Heimer SR, Engelbert M, Wawrousek EF, Gilmore MS, Ksander BR, Gregory MS (2008) αB crystallin protects retinal tissue during Staphylococcus aureus-induced endophthalmitis. Infect Immun 76(4):1781–1790. https://doi.org/10.1128/IAI.01285-07

  • Wilmarth PA, Taube JR, Riviere MA, Duncan MK, David LL (2004) Proteomic and sequence analysis of chicken lens crystallins reveals alternate splicing and translational forms of βB2 and βA2 crystallins. Invest Ophthalmol Vis Sci 45(8):2705–2715. https://doi.org/10.1167/iovs.04-0131

    Article  PubMed  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57(1):479–504

    Article  CAS  PubMed  Google Scholar 

  • Yu CM, Chang GG, Chang HC, Chiou SH (2004) Cloning and characterization of a thermostable catfish αB- crystallin with chaperone-like activity at high temperatures. Exp Eye Res 79(2):249–261

    Article  CAS  PubMed  Google Scholar 

  • Zinkevich NS, Bosenko DV, Link BA, Semina EV (2006) laminin alpha 1 gene is essential for normal lens development in zebrafish. BMC Dev Biol 6(1):1–12

    Article  Google Scholar 

Download references

Funding

This research did not receive any particular funding from any funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the designing, drafting, revising and approval of the final manuscript.

Corresponding author

Correspondence to Sudipa Saha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., De, P. & Saha, S. Structure–function relationship of α-crystallin in the context of vertebrate lens evolution and its role in eye disorders. J Proteins Proteom 14, 25–41 (2023). https://doi.org/10.1007/s42485-022-00101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-022-00101-5

Keywords

Navigation