Skip to main content
Log in

Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone αA-crystallin during cavefish eye degeneration

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

We have conducted a survey of the expression patterns of five genes encoding three different classes of major lens proteins during eye degeneration in the blind cavefish Astyanax mexicanus. This species consists of two forms, an eyed surface-dwelling form (surface fish) and a blind cave-dwelling (cavefish) form. Cavefish form an optic primordium with a lens vesicle and optic cup. In contrast to surface fish, however, the cavefish lens does not differentiate fiber cells and undergoes massive apoptosis. The genes encoding the lens intrinsic membrane proteins MIP and MP19 and the divergent βB1- and γM2-crystallins are expressed during cavefish lens development, although their levels are reduced because of a smaller lens, and the spatial distribution of their transcripts is modified because of the lack of differentiated fiber cells. In contrast, the αA-crystallin gene, which encodes a heat shock protein-related chaperone with antiapoptotic activity, is substantially downregulated in the developing cavefish lens. The results suggest that suppression of αA-crystallin antiapoptotic activity may be involved in cavefish eye degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alunni A, Menuet A, Candal E, Pénigault J-B, Jeffery WR, Rétaux S (2007) Developmental mechanisms for retinal degeneration in the blind cavefish Astyanax mexicanus. J Comp Neurol 505:221–233

    Article  PubMed  CAS  Google Scholar 

  • Barr T (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102

    Google Scholar 

  • Behrens M, Langecker TG, Wilkens H, Schmale H (1997) Comparative analysis of Pax-6 sequence and expression in eye development of the blind cave fish Astyanax fasciatus and its epigean conspecific. Mol Biol Evol 14:299–308

    PubMed  CAS  Google Scholar 

  • Behrens M, Wilkens H, Schmale H (1998) Cloning of the αA-crystallin genes of the blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. Gene 216:319–326

    Article  PubMed  CAS  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingby C, Tardieu A (2004) Aging and vision; structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  PubMed  CAS  Google Scholar 

  • Borowsky R, Wilkens H (2002) Mapping a cave fish genome: polygenic systems and regressive evolution. J Heredity 93:19–21

    Article  CAS  Google Scholar 

  • Chepelinsky AB, Piatigorsky J, Pisano MM, Dubin RA, Wistow G, Limioco TI, Klement JF, Jaworski CJ (1991) Lens protein gene expression: α-crystallins and MIP. Lens Eye Toxic Res 8:319–344

    PubMed  CAS  Google Scholar 

  • Church RL, Wang J (1993) The human lens fiber-cell intrinsic membrane protein MP19 gene: isolation and sequence analysis. Curr Eye Res 12:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Civil A, Svan Genesen ST, Lubsen NH (2002) c-Maf, the γD crystallin Maf-responsive element and growth factor regulation. Nucleic Acids Res 30:975–982

    Article  PubMed  CAS  Google Scholar 

  • Cui WS, Tomarev I, Piatigorsky J, Chepelinsky AB, Duncan MK (2004) Mafs, Prox1, and Pax6 can regulate chicken β1 crystallin gene expression. J Biol Chem 279:11088–11095

    Article  PubMed  CAS  Google Scholar 

  • Culver D (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Cvekl AC, Sax M, Bresnick EM, Piatigorsky J (1994) A complex array of positive and negative elements regulates the chick αA-crystallin genes: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol 14:7363–7376

    PubMed  CAS  Google Scholar 

  • Dahm R (1999) Lens fibre cell differentiation—a link with apoptosis? Ophthalmic Res 31:163–183

    Article  PubMed  CAS  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  PubMed  CAS  Google Scholar 

  • Goishi K, Shimizu A, Njarro G, Watanabe S, Rogers R, Zon LI, Kragsbrun M (2006) αA crystallin expression prevents γ-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development 133:2585–2593

    Article  PubMed  CAS  Google Scholar 

  • Graw J (1997) The crystallins: genes, proteins and diseases. Biol Chem 378:1331–1348

    PubMed  CAS  Google Scholar 

  • Hendriks W, Luenisson J, Bloemendal H, Nevo E, De Jong WW (1987) The lens protein αA crystallin in the blind mole rat Spalax ehrenbergi: evolutionary change and functional constraints. Proc Natl Acad Sci USA 84:5320–5324

    Article  PubMed  CAS  Google Scholar 

  • Hooven TA, Yamamoto Y, Jeffery WR (2004) Blind cavefish and heat shock protein chaperones: a novel role for hsp90α in lens apoptosis. Int J Dev Biol 48:731–738

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231:1–12

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Heredity 96:185–196

    Article  CAS  Google Scholar 

  • Jeffery WR, Martasian DP (1998) Evolution of eye degeneration in the cavefish Astyanax: apoptosis and the pax6 gene. Am Zool 38:685–696

    CAS  Google Scholar 

  • Jeffery WR, Strickler AG, Guiney S, Heyser D, Tomarev S (2000) Prox1 in eye degeneration and sensory organ compensation during development and evolution of the cavefish Astyanax. Dev Genes Evol 210:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kamachi YS, Sockanathan S, Liu Q, Breitman M, Lovell-Bradge R, Kondoh H (1995) Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J 14:3510–3519

    PubMed  CAS  Google Scholar 

  • Kumar NM, Jarvis LJ, Tenbroek E, Louis CF (1993) Cloning and expression of a major rat lens membrane protein, MP19. Exp Eye Res 56:35–43

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lang RA (2004) Pathways regulating lens induction in the mouse. Int J Dev Biol 48:783–791

    Article  PubMed  CAS  Google Scholar 

  • Langecker TG, Schamle H, Wilkens H (1993) Transcription of the opsin gene in degenerate eyes of cave dwelling Astyanax fasciatus (Teleostei, Characidae) and its conspecific ancestor during early ontogeny. Cell Tissue Res 273:183–192

    Article  Google Scholar 

  • Liu S, Tao Y, Xiao X (2007) Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochim Biophys Res Commun 354:109–114

    Article  CAS  Google Scholar 

  • Mao Y-W, Liu J, Xiang H, Li DW (2004) Human αA and αB crystallins bind to Bax and Bcl-X (S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526

    Article  PubMed  CAS  Google Scholar 

  • Menuet A, Alunni A, Joly J-S, Jeffery WR, Rétaux S (2007) Shh overexpression in Astyanax cavefish: multiple consequences on forebrain development and evolution. Development 134:845–855

    Article  PubMed  CAS  Google Scholar 

  • Mikhailov AT, Simirskii VN, Aleinikova KS, Gorgolyuk NA (1997) Developmental patterns of crystallin expression during lens fiber differentiation in amphibians. Int J Dev Biol 41:883–891

    PubMed  CAS  Google Scholar 

  • Morozov V, Wawrousek EF (2005) Caspase-dependent secondary lens fiber cell disintegration in αA- and αB- crystallin double knockout mice. Development 133:813–821

    Article  Google Scholar 

  • Posner M, Kantorow M, Horwitz J (1999) Cloning, sequencing and differential expression of αB-crystallin in the zebrafish, Danio rerio. Biochim Biophys Acta 1447:271–277

    PubMed  CAS  Google Scholar 

  • Protas M, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol 17:462–464

    Article  Google Scholar 

  • Quax-Jeuken Y, Bruisten S, Bloemendahl H, de Jong WW, Nevo E (1984) Evolution of crystallins: expression of lens-specific proteins in the blind mammals mole (Talpa europaea) and mole rat (Spalax ehrenbergi). Mol Biol Evol 2:279–288

    Google Scholar 

  • Reza HM, Urano A, Shimada M, Yasuda K (2007) Sequential and combinatorial roles of maf family genes define proper lens development. Mol Vis 13:18–30

    PubMed  CAS  Google Scholar 

  • Runkle S, Hill J, Kantorow M, Horwitz J, Posner M (2002) Sequence and spatial expression of zebrafish (Danio rerio) αA-crystallin. Mol Vis 8:45–50

    PubMed  CAS  Google Scholar 

  • Sanyal S, Jansen HG, De Grip WG, Nevo E, De Jong WW (1990) The eye of the blind mole rat, Spalax ehrenbergi: rudiment with hidden function. Invest Ophthalmol Vis Sci 31:1398–1404

    PubMed  CAS  Google Scholar 

  • Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, Semina EV, Vihtelic TS (2005) Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 122:513–527

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Bassnett S (1996) Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 12:212–215

    Article  PubMed  CAS  Google Scholar 

  • Soares D, Yamamoto Y, Strickler AG, Jeffery WR (2004) The lens has a specific influence on optic nerve and tectum development in the blind cavefish Astyanax. Dev Neurosci 26:308–317

    Article  PubMed  CAS  Google Scholar 

  • Strickler AG, Yamamoto Y, Jeffery WR (2001) Early and late changes in Pax6 expression accompany eye degeneration during cavefish development. Dev Genes Evol 211:138–144

    Article  PubMed  CAS  Google Scholar 

  • Strickler AG, Famuditimi K, Jeffery WR (2002) Retinal homeobox genes and the role of cell proliferation in cavefish eye degeneration. Int J Dev Biol 46:285–294

    PubMed  CAS  Google Scholar 

  • Strickler AG, Yamamoto Y, Jeffery WR (2007) The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol 311:512–523

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by genomic averaging of multiple internal control genes. Genome Biol 18:R34–1–R34–11

    Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367

    Google Scholar 

  • Wride MA (1996) Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61:77–93

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y (2004) Cavefish. Curr Biol 14:R943

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Jeffery WR (2000) Central role for the lens in cavefish eye degeneration. Science 289:631–633

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Stopa T, Golestaneh N, Wang Y, Wu K, Chauhan BK, Gao CY, Cveklova K, Duncan MK, Pastell RG, Chepelinsky AB, Skoultchi AI, Cvekl A (2006) Regulation of αA-crystallin via Pax6, cMaf, CREB and a broad domain of lens-specific chomatin. EMBO J 25:2107–2118

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Yasuda K (2002) Characterization of the chicken L-maf, MafB, and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 7:693–706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

NIH (R01-EY014619) and NSF (IBN-0542384) grants to W. R. J supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Jeffery.

Additional information

Communicated by M. Hammerschmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strickler, A.G., Byerly, M.S. & Jeffery, W.R. Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone αA-crystallin during cavefish eye degeneration. Dev Genes Evol 217, 771–782 (2007). https://doi.org/10.1007/s00427-007-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0190-z

Keywords

Navigation