Skip to main content
Log in

Crystallins as Important Pathogenic Targets for Accumulation of Structural Damages Resulting in Protein Aggregation and Cataract Development: Introduction to This Special Issue of Biochemistry (Moscow)

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This issue of Biochemistry (Moscow) is dedicated to the role of protein misfolding and aggregation in cataract development. In fact, many genetic mutations or chemical and physical deleterious factors can initiate alterations in the macrostructural order and proper folding of eye lens proteins, which in some cases result in the formation of large light-scattering aggregates, affecting the quality of vision and making lens more prone to cataract development. Diabetes mellitus, which is associated with oxidative stress and mass production of highly reactive compounds, can accelerate unfolding and aggregation of eye lens proteins. This journal issue contains reviews and research articles that describe the destructive effects of mutations and highly reactive metabolites on the structure and function of lens crystallin proteins, as well important molecules in the lens’s natural defense system involved in protection against deleterious effects of the physical and chemical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delaye, M. (1983) Short-range order of crystallin proteins accounts for eye lens transparency, Nature, 302, 415-417.

    CAS  PubMed  Google Scholar 

  2. Bloemendal, H. (1977) The vertebrate eye lens, Science, 197, 127-138.

    CAS  PubMed  Google Scholar 

  3. Lampi, K. J., Ma, Z., Shih, M., Shearer, T. R., Smith, J. B., et al. (1997) Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens, J. Biol. Chem., 272, 2268-2275.

    CAS  PubMed  Google Scholar 

  4. Benedek, G. B. (1971) Theory of transparency of the eye, Appl. Opt., 10, 459-473.

    CAS  PubMed  Google Scholar 

  5. Bera, S., and Abraham, E. C. (2002) The αA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with αB-crystallin, Biochemistry, 41, 297-305.

    CAS  PubMed  Google Scholar 

  6. Basha, E., O’Neill, H., and Vierling, E. (2012) Small heat shock proteins and α-crystallins: Dynamic proteins with flexible functions, Trends Biochem. Sci., 37, 106-117.

    CAS  PubMed  Google Scholar 

  7. Bron, A. J., Vrensen, G., Koretz, J., Maraini, G., and Harding, J. (2000) The ageing lens, Opthalmologica, 214, 86-104.

    CAS  Google Scholar 

  8. Takemoto, L. J., and Ponce, A. A. (2006) Decreased association of aged alpha crystallins with gamma crystallins, Exp. Eye Res., 83, 793-797.

    CAS  PubMed  Google Scholar 

  9. Treweek, T. M., Rekas, A., Lindner, R. A., Walker, M. J., Aquilina, J. A., et al. (2005) R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable, FEBS J., 272, 711-724.

    CAS  PubMed  Google Scholar 

  10. Dubin, R. A., Wawrousek, E. F., and Piatigorsky, J. (1989) Expression of the Murine αB-crystallin gene is not restricted to the lens, Mol. Cell Biol., 9, 1083-1091.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sax, C. M., and Piatigorsky, J. (1994) Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues, Adv. Enzymol. Relat. Areas Mol. Biol., 69, 155-201.

    CAS  PubMed  Google Scholar 

  12. Koletsa, T., Stavridi, F., Bobos, M., Kostopoulos, I., Kotoula, V., et al. (2014) alphaB-crystallin is a marker of aggressive breast cancer behavior but does not independently predict for patient outcome: A combined analysis of two randomized studies, BMC Clin. Pathol., 14, 1-13.

    Google Scholar 

  13. Rajasekaran, N. S., Connell, P., Christians, E. S., Yan, L., Taylor, R. P., et al. (2007) Human alphaB-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice, Cell, 130, 427-439.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon, S., Fontaine, J., Martin, J. L., Sun, X., Hoppe, A. D., et al. (2007) Myopathy-associated alphaB-crystallin mutants abnormal phosphorylation, intracellular location, and interactions with other small heat shock proteins, J. Biol. Chem., 282, 34276-34287.

    CAS  PubMed  Google Scholar 

  15. Avliyakulov, N. K., Rajavel, K. S., Minh, K., Haykinson, M. J., and Pope, W. B. (2014) C-terminally truncated form of alphaB-crystallin is associated with IDH1 R132H mutation in anaplastic astrocytoma, J. Neurooncol., 117, 53-65.

    CAS  PubMed  Google Scholar 

  16. Boelens, W. C. (2014) Cell biological roles of αB-crystallin, Prog. Biophys. Mol. Biol., 115, 3-10.

    CAS  PubMed  Google Scholar 

  17. Wistow, G., and Kim, H. (1991) Lens protein expression in mammals: Taxon-specificity and the recruitment of crystallins, J. Mol. Evol., 32, 262-269.

    CAS  PubMed  Google Scholar 

  18. Horwitz, J. (1992) a-Crystallin can function as a molecular chaperone, Proc. Natl. Acad. Sci. USA, 89, 10449-10453.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Andley, U. P. (2007) Crystallins in the eye: Function and pathology, Prog. Retin. Eye Res., 26, 78-98.

    CAS  PubMed  Google Scholar 

  20. Van Montfort, R., Slingsby, C., and Vierlingt, E. (2001) structure and function of the small heat shock protein/α-crystallin family of molecular chaperones, Adv. Protein Chem., 59, 105-156.

    CAS  PubMed  Google Scholar 

  21. Pasupuleti, N., Matsuyama, S., Voss, O., Doseff, A. I., Song, K., et al. (2010) The anti-apoptotic function of human αA-crystallin is directly related to its chaperone activity, Cell Death Dis., 1, e31.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roskamp, K. W., Paulson, C. N., Brubaker, W. D., and Martin, R. W. (2020) Function and aggregation in structural eye lens crystallins, Acc. Chem. Res., 53, 863-874.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark, A. R., Lubsen, N. H., and Slingsby, C. (2012) sHSP in the eye lens: Crystallin mutations, cataract and proteostasis, Int. J. Biochem. Cell Biol., 44, 1687-1697.

    CAS  PubMed  Google Scholar 

  24. Yousefi, R., Javadi, S., Amirghofran, S., Oryan, A., and Moosavi-Movahedi, A. A. (2016) Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients, Int. J. Biol. Macromol., 82, 328-338.

    CAS  PubMed  Google Scholar 

  25. Zafaranchi, S., Khoshaman, K., Masoudi, R., Hemmateenejad, B., and Yousefi, R. (2017) The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 170, 174-183.

    Google Scholar 

  26. Dimauro, I., Antonioni, A., Mercatelli, N., and Caporossi, D. (2018) The role of αB-crystallin in skeletal and cardiac muscle tissues, Cell Stress Chaperones, 23, 491-505.

    PubMed  Google Scholar 

  27. Shiels, A., Hejtmancik, J. F., Sciences, V., and Branch, V. F. (2017) Mutations and mechanisms in congenital and age-related cataracts, Exp. Eye Res., 156, 95-102.

    CAS  PubMed  Google Scholar 

  28. Phadte, A. S., Sluzala, Z. B., and Fort, P. E. (2021) Therapeutic potential of α-crystallins in retinal neurodegenerative diseases, Antioxidants, 10, 1-13.

    Google Scholar 

  29. Pescosolido, N., Barbato, A., Giannotti, R., Komaiha, C., and Lenarduzzi, F. (2016) Age-related changes in the kinetics of human lenses: Prevention of the cataract, Int. J. Ophthalmol., 9, 1506.

    PubMed  PubMed Central  Google Scholar 

  30. Varma, S. D., Kovtun, S., and Hegde, K. R. (2011) Role of UV irradiation and oxidative stress in cataract formation. Medical prevention by nutritional antioxidants and metabolic agonists, Eye Contact Lens, 37, 233-245.

    PubMed  PubMed Central  Google Scholar 

  31. Linetsky, M., Shipova, E., Cheng, R., and Ortwerth, B. J. (2008) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins, Biochim. Biophys. Acta, 1782, 22-34.

    CAS  PubMed  Google Scholar 

  32. Pande, A., Mokhor, N., Pande, J., and States, U. (2018) Deamidation of human γS-crystallin increases attractive protein interactions: Implications for cataract, Biochemistry, 54, 4890-4899.

    Google Scholar 

  33. Gong, X., Li, E., Klier, G., Huang, Q., Wu, Y., et al. (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice, Cell, 91, 833-843.

    CAS  PubMed  Google Scholar 

  34. Kashani, M. R., Yousefi, R., Akbarian, M., Alavianmehr, M. M., and Ghasemi, Y. (2016) Structure, chaperone activity, and aggregation of wild type and R12C mutant αB crystallins in the presence of thermal stress and calcium ion – implications for role of calcium in cataract pathogenesis, Biochemistry, 81, 122-134.

    PubMed  Google Scholar 

  35. Ghahramani, M., Yousefi, R., Khoshaman, K., Sasan, S., and Kurganov, B. I. (2016) Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human alpha-Crystallin subunits against copper-mediated ascorbic acid oxidation, Int. J. Biol. Macromol., 87, 208-221.

    CAS  PubMed  Google Scholar 

  36. Calva, J. A. D., Vázquez, M. L. P., and King, J. A., and Quintanar, L. (2018) Mercury-induced aggregation of human lens γ‑crystallins reveals a potential role in cataract disease, J. Biol. Inorg. Chem., 23, 1105-1118.

    Google Scholar 

  37. Kempka, K., Kaminski, P., Malukiewicz, G., Bogdzinska, M., and Florczak, S. (2018) Initial pro-antioxidant reactions in the patients suffering from cataract in the interactions with cadmium and lead, World Sci., 108, 195-206.

    CAS  Google Scholar 

  38. Kyselova, Z., Stefek, M., and Bauer, V. (2004) Pharmacological prevention of diabetic cataract, J. Diabetes Complicat., 18, 129-140.

    CAS  Google Scholar 

  39. Moreau, K. L., and King, J. A. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention, Trends Mol. Med., 18, 273-282.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kato, K., Ito, H., Kamei, K., and Iwamoto, I. (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo, Cell Stress Chaperones, 3, 152.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Khoshaman, K., Yousefi, R., and Moosavi-Movahedi, A. A. (2017) Protective role of antioxidant compounds against peroxynitrite-mediated modification of R54C mutant a A-crystallin, Arch. Biochem. Biophys., 629, 43-53.

    CAS  PubMed  Google Scholar 

  42. Jara, O., Minogue, P. J., Berthoud, V. M., and Beyer, E. C. (2018) Chemical chaperone treatment improves levels and distributions of connexins in Cx50D47A mouse lenses, Exp. Eye Res., 175, 192-198.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lian, R. R., and Afshari, N. A. (2020) The quest for homeopathic and nonsurgical cataract treatment, Curr. Opin. Ophthalmol., 31, 61-66.

    PubMed  Google Scholar 

  44. Liu, Z., Wang, R., Lin, H., and Liu, Y. (2020) Lens regeneration in humans: using regenerative potential for tissue repairing, Ann. Transl. Med., 8, 1-17.

    Google Scholar 

  45. Mikhaylova, V., Eronina, T., and Kurganov, B. (2021) The effect of chemical chaperones on test systems with different kinetic regime of aggregation, FEBS Open Bio, 11, 170-170.

    Google Scholar 

  46. Ghahramani, M., Yousefi, R., Krivandin, A., Muranov, K., Kurganov, B., et al. (2020) Kinetic data analysis of chaperone-like activity of Wt, R69C and D109H αB-crystallins, Data in Brief, 28, 104922.

    PubMed  Google Scholar 

  47. Kurganov, B. I. (2017) Quantification of anti-aggregation activity of chaperones, Int. J. Biol. Macromol., 100, 104-117.

    CAS  PubMed  Google Scholar 

  48. Kurganov, B. I. (2015) Selection of test systems for estimation of anti-aggregation activity of molecular chaperones, Biochem. Anal. Biochem., 4, 1.

    Google Scholar 

  49. Kurganov, B. I. (2014) Estimation of chaperone-like activity using test systems based on protein amyloid aggregation, Biochem. Anal. Biochem., 4, https://doi.org/10.4172/2161-1009.1000160.

    Article  Google Scholar 

  50. Borzova, V. A., Markossian, K. A., Kara, D. A., Chebotareva, N. A., Makeeva, V. F., et al. (2013) Quantification of anti-aggregation activity of chaperones: A test-system based on dithiothreitol-induced aggregation of bovine serum albumin, PLoS One, 8, e74367.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chebotareva, N. A., Eronina, T. B., Mikhaylova, V., Roman, S. G., Tugaeva, K. V., et al. (2022) Effect of trehalose on oligomeric state and anti-aggregation activity of αB-Crystallin, Biochemistry (Moscow), 87, 121-130.

    Google Scholar 

  52. Sharma, K. K., and Santhoshkumar, P. (2009) Lens aging: Effects of crystallins, Biochim. Biophys. Acta, 1790, 1095-1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Muranov, K. O., and Ostrovsky, M. O. (2022) Biochemistry of Eye Lens in the Norm and in Cataractogenesis, Biochemistry (Moscow), 87, 106-120.

    Google Scholar 

  54. Moghadam, S. S., Oryan, A., Kurganov, B. I., Tamaddon, A. M., Alavianehr, M. M., et al. (2017) The structural damages of lens crystallins with peroxynitrite and methylglyoxal, two causetive players in diabetic complications and preventive role of lens antioxidant components, Int. J. Biol. Macromol., 103, 74-88.

    CAS  PubMed  Google Scholar 

  55. Stitt, A. (2005) The maillard reaction in eye disease, Ann. N. Y. Acad. Sci., 1043, 582-597.

    CAS  PubMed  Google Scholar 

  56. Patel, D. K., Prasad, S. K., Kumar, R., and Hemalatha, S. (2011) Cataract: A major secondary complication of diabetes, its epidemiology and an overview on major medicinal plants screened for anticataract activity, Asian Pac. J. Trop. Dis., 1, 323-329.

    Google Scholar 

  57. Kumar, C. U., Suryavanshi, U., Sontake, V., Reddy, P. Y., Sankhala, R. S., et al. (2022) Effects of sorbitol on alpha-crystallin structure and function, Biochemistry (Moscow), 87, 131-140.

    Google Scholar 

  58. Moghadam, S.S., Ghahramani, M., Khoshaman, K., Oryan, A., Moosavi-Movahedi, A. A., et al. (2022) Relationship between the structure and chaperone activity of human αA-Crystallin after its modification with diabetes-associated oxidative agents and protective role of antioxidant compounds, Biochemistry (Moscow), 87, 91-105.

    Google Scholar 

  59. Graw, J. (2009) Genetics of crystallins: Cataract and beyond, Exp. Eye Res., 88, 173-189.

    CAS  PubMed  Google Scholar 

  60. Budnar, B., Tangirala, R., Bakthisaran, R., and Rao, C. M. (2022) Protein aggregation and cataract: Role of age-related modifications and mutations in α-crystallins, Biochemistry (Moscow), in press.

Download references

Funding

This work was supported by the Iran National Science Foundation, INSF (Grant No. 99014455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yousefi.

Ethics declarations

The author declares no conflicts of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, R. Crystallins as Important Pathogenic Targets for Accumulation of Structural Damages Resulting in Protein Aggregation and Cataract Development: Introduction to This Special Issue of Biochemistry (Moscow). Biochemistry Moscow 87, 87–90 (2022). https://doi.org/10.1134/S0006297922020018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020018

Keywords

Navigation