Skip to main content
Log in

TEMPO-oxidized Cellulose Nanofibers/ Alginate Nanocomposite as a Promising nanocomposite Material for the Adsorption of Cationic Dyes

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

TEMPO-oxidized cellulose nanofiber/alginate nanocomposite (T-CNF/SA) was prepared and characterized as a recyclable adsorbent for cationic dye. TEMPO-oxidized CNFs contain a large number of carboxylic groups, they may interact with methylene blue as a model of cationic dye in aqueous solutions. Two materials were synthesized in this study: T-CNF and CNF/SA nanocomposite. In order to determine the ability of the nanocomposite to remove the dye, batch sorption experiments were performed using the nanocomposite after their synthesis and characterization. In the studied concentration range of dye, equilibrium data were well fitted to the Langmuir isotherm model, indicating that dye removal is a favorable process. At 25 °C and neutral pH, the maximum adsorption capacities reached 185.2 mg dye/g and 216.4 mg dye/g for T-CNF and for T-CNF/SA, respectively. The adsorption efficiency was up to 95% after 2 h for T-CNF/SA. The adsorption data fitted well with the second-order kinetic model high correlation coefficients (R2 > 0.99) and the isotherm data followed the Langmuir model equation. Finally, the study presents a feasible, practical, and reusable nanocomposite as an interesting adsorbent for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The research data associated with a paper is available,

References

  1. Fiol N, Vásquez MG, Pereira M, Tarrés Q, Mutjé P, Delgado-Aguilar M (2019) TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose 26:903–916. https://doi.org/10.1007/s10570-018-2106-7

    Article  CAS  Google Scholar 

  2. Dai L, Zhu W, He L, Tan F, Zhu N, Zhou Q, He M, Hu G (2018) Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal. Bioresour Technol 267:510–516. https://doi.org/10.1016/j.biortech.2018.07.090

    Article  CAS  PubMed  Google Scholar 

  3. Jiao C, Li T, Wang J, Wang H, Zhang X, Han X, Du Z, Shang Y, Chen Y (2020) Efficient removal of dyes from aqueous solution by a porous sodium Alginate/gelatin/graphene Oxide Triple-network Composite Aerogel. J Polym Environ 28:1492–1502. https://doi.org/10.1007/s10924-020-01702-1

    Article  CAS  Google Scholar 

  4. Song W, Gao B, Xu X, Xing L, Han S, Duan P, Song W, Jia R (2016) Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour Technol 210:123–130. https://doi.org/10.1016/j.biortech.2016.01.078

    Article  CAS  PubMed  Google Scholar 

  5. Huang H, Liu J, Zhang P, Zhang D, Gao F (2017) Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem Eng J 307:696–706. https://doi.org/10.1016/j.cej.2016.08.134

    Article  CAS  Google Scholar 

  6. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Zhao B, Tang P, Cao Z, Huang M, Tan S (2014) Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon N Y 77:113–121. https://doi.org/10.1016/j.carbon.2014.05.012

    Article  CAS  Google Scholar 

  8. Hassan M, Zeid REA, Abou-Elseoud WS, Hassan E, Berglund L, Oksman K (2019) Effect of unbleached rice straw cellulose nanofibers on the properties of polysulfone membranes, Polymers (Basel).11https://doi.org/10.3390/polym11060938

  9. Hassan E, Hassan M, Abou-zeid R, Berglund L, Oksman K (2017) Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polym (Basel) 9. https://doi.org/10.3390/polym9090388

  10. Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU (2014) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528. https://doi.org/10.1016/j.cej.2013.09.057

    Article  CAS  Google Scholar 

  11. El Samrani AG, Lartiges BS, Villiéras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42:951–960. https://doi.org/10.1016/j.watres.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  12. Wang L (2009) Aqueous organic dye discoloration induced by contact glow discharge electrolysis. J Hazard Mater 171:577–581. https://doi.org/10.1016/j.jhazmat.2009.06.037

    Article  CAS  PubMed  Google Scholar 

  13. Barquist K, Larsen SC (2010) Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous Mesoporous Mater 130:197–202. https://doi.org/10.1016/j.micromeso.2009.11.005

    Article  CAS  Google Scholar 

  14. Salama A (2016) Functionalized hybrid materials assisted organic dyes removal from aqueous solutions. Environ Nanatechnol Monit Manag 6:159–163. https://doi.org/10.1016/j.enmm.2016.10.003

    Article  Google Scholar 

  15. Hassan ML, Fadel SM, Abouzeid RE, Abou Elseoud WS, Hassan EA, Berglund L, Oksman K (2020) Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-67909-3

    Article  CAS  Google Scholar 

  16. Nan Y, Gomez-Maldonado D, Iglesias MC, Whitehead DC, Peresin MS (2023) Valorized soybean hulls as TEMPO-oxidized cellulose nanofibril and polyethylenimine composite hydrogels and their potential removal of water pollutants. Cellulose 92:83–91. https://doi.org/10.1007/s10570-023-05086-y

    Article  CAS  Google Scholar 

  17. Wang Q, Liu S, Chen H, Liu J, Zhu Q (2022) TEMPO-oxidized cellulose beads for cationic dye adsorption, BioResources. 176056–6066. https://doi.org/10.15376/biores.17.4.6056-6066

  18. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665. https://doi.org/10.1007/s10570-014-0168-8

    Article  CAS  Google Scholar 

  19. Abdullah AH, Yasin SA, Abdullah SM, Khalaf MY, Saeed IA (2022) A kinetic and isotherm study on removing methylene blue from aqueous solutions by oxidized cellulose nanostructure. Emergent Mater 5:1199–1212. https://doi.org/10.1007/s42247-022-00397-5

    Article  CAS  Google Scholar 

  20. Abdelaziz MA, Owda ME, Abouzeid RE, Alaysuy O, Mohamed ElI (2023) Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Int J Biol Macromol 225:1462–1475. https://doi.org/10.1016/j.ijbiomac.2022.11.203

    Article  CAS  PubMed  Google Scholar 

  21. Abou-Zeid RE, Kamal KH, Abd El-Aziz ME, Morsi SM, Kamel S (2021) Grafted TEMPO-oxidized cellulose nanofiber embedded with modified magnetite for effective adsorption of lead ions. Int J Biol Macromol 167:1091–1101. https://doi.org/10.1016/j.ijbiomac.2020.11.063

    Article  CAS  PubMed  Google Scholar 

  22. Georgouvelas D (2022) Modified and hybrid cellulose-based materials for water purification,

  23. Hassan ML, Abou-Zeid RE, Fadel SM, El-Sakhawy M, Khiari R (2014) Cellulose nanocrystals and carboxymethyl cellulose from olive stones and their use to improve paper sheets properties. Int J Nanoparticles 7:261–277. https://doi.org/10.1504/ijnp.2014.067613

    Article  Google Scholar 

  24. Abou-Zeid RE, Salama A, Al-Ahmed ZA, Awwad NS, Youssef MA (2020) Carboxylated cellulose nanofibers as a novel efficient adsorbent for water purification. Cellul Chem Technol 54:237–245. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.25

    Article  CAS  Google Scholar 

  25. Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127

    Article  CAS  PubMed  Google Scholar 

  26. Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2019) Current state and New Trends in the Use of Cellulose Nanomaterials for Wastewater Treatment. Biomacromolecules 20:573–597. https://doi.org/10.1021/acs.biomac.8b00839

    Article  CAS  PubMed  Google Scholar 

  27. Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298. https://doi.org/10.1016/j.watres.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481. https://doi.org/10.1016/S0142-9612(03)00167-4

    Article  CAS  PubMed  Google Scholar 

  29. Pettignano A, Tanchoux N, Cacciaguerra T, Vincent T, Bernardi L, Guibal E, Quignard F (2017) Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Carbohydr Polym 178:78–85. https://doi.org/10.1016/j.carbpol.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  30. Abou-Zeid RE, Awwad NS, Nabil S, Salama A, Youssef MA (2019) Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol 141:1280–1286. https://doi.org/10.1016/j.ijbiomac.2019.09.076

    Article  CAS  PubMed  Google Scholar 

  31. Fiol N, Poch J, Villaescusa I (2004) Chromium (VI) uptake by grape stalks wastes encapsulated in calcium alginate beads: equilibrium and kinetics studies. Chem Speciat Bioavailab 16:25–33. https://doi.org/10.3184/095422904782775153

    Article  CAS  Google Scholar 

  32. Abouzeid RE, Khiari R, Ali KA (2022) Activated Charcoal/Alginate nanocomposite beads for efficient adsorption of the Cationic Dye Methylene Blue: kinetics and equilibrium. Chem Afr 178:485–493. https://doi.org/10.1007/s42250-022-00560-9

    Article  CAS  Google Scholar 

  33. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. https://doi.org/10.1021/bm2008907

    Article  CAS  PubMed  Google Scholar 

  34. Lu P, Liu R, Liu X, Wu M (2018) Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Nanomaterials 8:800. https://doi.org/10.3390/nano8100800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  PubMed  Google Scholar 

  36. Gurgel LVA, Júnior OK, de Gil RP, Gil LF (2008) Adsorption of Cu(II), cd(II), and pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083. https://doi.org/10.1016/j.biortech.2007.05.072

    Article  CAS  PubMed  Google Scholar 

  37. Abouzeid RE, Khiari R, Beneventi D, Dufresne A (2018) Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering, Biomacromolecules. 194442–4452. https://doi.org/10.1021/acs.biomac.8b01325

  38. Onyianta AJ, Dorris M, Williams RL (2018) Aqueous morpholine pre-treatment in cellulose nanofibril (CNF) production: comparison with carboxymethylation and TEMPO oxidisation pre-treatment methods. Cellulose 25:1047–1064. https://doi.org/10.1007/s10570-017-1631-0

    Article  CAS  Google Scholar 

  39. Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8:784. https://doi.org/10.1039/b605258d

    Article  CAS  Google Scholar 

  40. Abou-Zeid RE, Hassan EA, Bettaieb F, Khiari R, Hassan ML (2015) (2015) Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites, J. Nanomater. https://doi.org/10.1155/2015/687490

  41. Nascimento DM, Nunes YL, Figueirêdo MCB, de Azeredo HMC, Aouada FA, Feitosa JPA, Rosa MF, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428–2448. https://doi.org/10.1039/C8GC00205C

    Article  CAS  Google Scholar 

  42. Kim H, Song JE, Kim HR (2021) Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio-leather. Cellulose 28:3183–3200. https://doi.org/10.1007/s10570-021-03705-0

    Article  CAS  Google Scholar 

  43. Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216. https://doi.org/10.1016/j.cej.2012.01.136

    Article  CAS  Google Scholar 

  44. Lezehari M, Basly JP, Baudu M, Bouras O (2010) Alginate encapsulated pillared clays: removal of a neutral/anionic biocide (pentachlorophenol) and a cationic dye (safranine) from aqueous solutions. Colloids Surf Physicochem Eng Asp 366:88–94. https://doi.org/10.1016/j.colsurfa.2010.05.021

    Article  CAS  Google Scholar 

  45. Salama A, Hesemann P (2018) New N-guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. Int J Biol Macromol 111:762–768. https://doi.org/10.1016/j.ijbiomac.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Zhang FS (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939. https://doi.org/10.1016/j.jhazmat.2009.01.085

    Article  CAS  PubMed  Google Scholar 

  47. Salama A, Hesemann P (2018) Synthesis of N-Guanidinium-Chitosan/Silica hybrid composites: efficient adsorbents for Anionic Pollutants. J Polym Environ 26:1986–1997. https://doi.org/10.1007/s10924-017-1093-3

    Article  CAS  Google Scholar 

  48. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. https://doi.org/10.1016/j.ijbiomac.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  49. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. https://doi.org/10.1016/j.jcis.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  50. Chan CH, Chia CH, Zakaria S, Sajab MS, Chin SX (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Adv 5:18204–18212. https://doi.org/10.1039/c4ra15754k

    Article  CAS  Google Scholar 

  51. Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738. https://doi.org/10.1007/s10570-015-0747-3

    Article  CAS  Google Scholar 

  52. Yu Z, Hu C, Dichiara AB, Jiang W, Gu J (2020) Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 10. https://doi.org/10.3390/nano10010169

  53. Hussain A, Li J, Wang J, Xue F, Chen Y, Bin Aftab T, Li D (2018) (2018) Hybrid Monolith of Graphene/TEMPO-Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye, J. Nanomater. https://doi.org/10.1155/2018/5963982

  54. Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303. https://doi.org/10.1016/j.chemosphere.2015.07.078

    Article  CAS  PubMed  Google Scholar 

  55. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804. https://doi.org/10.1021/am403222u

    Article  CAS  PubMed  Google Scholar 

  56. Melo BC, Paulino FAA, Cardoso VA, Pereira AGB, Fajardo AR, Rodrigues FHA (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydr Polym 181:358–367. https://doi.org/10.1016/j.carbpol.2017.10.079

    Article  CAS  PubMed  Google Scholar 

  57. Chen T, Liu H, Gao J, Hu G, Zhao Y, Tang X, Han X (2022) Efficient Removal of Methylene Blue by Bio-Based Sodium Alginate/Lignin Composite Hydrogel Beads, Polymers (Basel). 142917. https://doi.org/10.3390/polym14142917

  58. García A, Culebras M, Collins MN, Leahy JJ (2018) Stability and rheological study of sodium carboxymethyl cellulose and alginate suspensions as binders for lithium ion batteries. J Appl Polym Sci 135:46217. https://doi.org/10.1002/app.46217

    Article  CAS  Google Scholar 

Download references

Funding

No funding is available.

Author information

Authors and Affiliations

Authors

Contributions

The authors of this article and their contribution to this work are equal contributions.

Corresponding authors

Correspondence to Ragab Abouzeid or Qinglin Wu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest. Ramzi Khiari is Guest Editor of the Special Issue “Lignocellulose at multiscale: preparation characterization.“

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouzeid, R., Taha, M., Khiari, R. et al. TEMPO-oxidized Cellulose Nanofibers/ Alginate Nanocomposite as a Promising nanocomposite Material for the Adsorption of Cationic Dyes. Chemistry Africa 6, 2331–2342 (2023). https://doi.org/10.1007/s42250-023-00661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00661-z

Keywords

Navigation