Skip to main content
Log in

Synthesis of N-Guanidinium-Chitosan/Silica Hybrid Composites: Efficient Adsorbents for Anionic Pollutants

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new chitosan derivative, N-guanidinium chitosan acetate, has been synthesized by direct guanylation of chitosan by cyanamide in presence of scandium(III) triflate under mild acidic condition. Starting from this material, N-guanidinium chitosan/silica microhybrids were prepared via a sol gel method using 3-glycidoxypropyl trimethoxysilane as silica precursor. Both N-guanidinium chitosan and the N-guanidinium chitosan/silica hybrid were characterized by a range of analytical techniques such as 29Si/13C solid state NMR, FT-IR, scanning electron microscopy, thermogravimetry and elemental analysis. The characterization of the chitosan/silica hybrid indicated that this material is a highly hydrophilic nanocomposite material containing an organic core and a highly condensed silica shell. The N-guanidinium chitosan/silica microhybrids display excellent adsorption properties for anionic dyes such as methyl orange (MO) with very high capacities up to 917 mg/g. The fixation of MO as anionic dye was investigated in detail as a function of contact time, pH and the MO concentration. The adsorption kinetics of MO on N-guanidinium chitosan/silica microhybrids was more accurately described by pseudo second-order model. Langmuir isotherm model exhibited a better fit with adsorption data than Freundlich isotherm model. This work opens new possibilities for using N-guanidinium chitosan as a reusable adsorbent for water purification.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang J, Zhou Q, Ou L (2012) Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. J Chem Eng Data 57:412–419. doi:10.1021/je2009945

    Article  CAS  Google Scholar 

  2. Niu P, Hao J (2011) Fabrication of titanium dioxide and tungstophosphate nanocomposite films and their photocatalytic degradation for methyl orange. Langmuir 27:13590–13597. doi:10.1021/la203178s

    Article  CAS  Google Scholar 

  3. Ma J, Yu F, Zhou L et al (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4:5749–5760. doi:10.1021/am301053m

    Article  CAS  Google Scholar 

  4. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. doi:10.1016/j.ijbiomac.2014.11.002

    Article  CAS  Google Scholar 

  5. Budnyak TM, Pylypchuk IV, Tertykh V a et al (2015) Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol–gel method. Nanoscale Res Lett 10:87. doi:10.1186/s11671-014-0722-1

    Article  Google Scholar 

  6. Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. doi:10.1021/am4055657

    Article  CAS  Google Scholar 

  7. Salama A (2017) New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J Colloid Interface Sci 487:348–353. doi:10.1016/j.jcis.2016.10.034

    Article  CAS  Google Scholar 

  8. Kołodyńska D, Gęca M, Pylypchuk IV, Hubicki Z (2016) Development of new effective sorbents based on nanomagnetite. Nanoscale Res Lett 11:152. doi:10.1186/s11671-016-1371-3

    Article  Google Scholar 

  9. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  10. Varghese JG, Karuppannan RS, Kariduraganavar MY (2010) Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures. J Chem Eng Data 55:2084–2092. doi:10.1021/je9003993

    Article  CAS  Google Scholar 

  11. Kadib A, El Molvinger K, Guimon C et al (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 75:2198–2204

    Article  Google Scholar 

  12. Salama A (2016) Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem 35:131–149. doi:10.1080/07328303.2016.1154152

    Article  CAS  Google Scholar 

  13. Budnyak TM, Yanovska ES, Kołodyńska D et al (2016) Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim 125:1335–1351. doi:10.1007/s10973-016-5581-9

    Article  CAS  Google Scholar 

  14. Han Y-H, Taylor A, Mantle MD, Knowles KM (2007) Sol–gel-derived organic–inorganic hybrid materials. J Non-Cryst Solids 353:313–320. doi:10.1016/j.jnoncrysol.2006.05.042

    Article  CAS  Google Scholar 

  15. Salama A, El-Sakhawy M (2014) Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydr Polym 113:500–506. doi:10.1016/j.carbpol.2014.07.022

    Article  CAS  Google Scholar 

  16. Roosen J, Spooren J, Binnemans K (2014) Adsorption performance of functionalized chitosan–silica hybrid materials toward rare. J Mater Chem A 2:19415–19426. doi:10.1039/C4TA04518A

    Article  CAS  Google Scholar 

  17. Molvinger K, Quignard F, Brunel D et al (2004) Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem Mater 16:3367–3372. doi:10.1021/cm0353299

    Article  CAS  Google Scholar 

  18. Calnan BJ, Tidor B, Biancalana S et al (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171. doi:10.1126/science.252.5009.1167

    Article  CAS  Google Scholar 

  19. Sasaki DY, Kurihara K, Kunitake T (1991) Specific, multiple-point binding of ATP and AMP to a guanidinium-functionalized monolayer. J Am Chem Soc 113:9685–9686. doi:10.1021/ja00025a051

    Article  CAS  Google Scholar 

  20. Bouchal R, Prelot B, Hesemann P (2016) Alkylguanidinium based ionic liquids in a screening study for the removal of anionic pollutants from aqueous solution. RSC Adv 6:39125–39130. doi:10.1039/C6RA03607D

    Article  CAS  Google Scholar 

  21. Bouchal R, Hamel A, Hesemann P et al (2016) Micellization behavior of long-chain substituted alkylguanidinium surfactants. Int J Mol Sci 17:223–239. doi:10.3390/ijms17020223

    Article  Google Scholar 

  22. Zhang X, Duan Y, Wang D, Bian F (2015) Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery. Carbohydr Polym 122:53–59. doi:10.1016/j.carbpol.2014.12.054

    Article  CAS  Google Scholar 

  23. Hu Y, Du Y, Yang J et al (2007) Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydr Polym 67:66–72. doi:10.1016/j.carbpol.2006.04.015

    Article  CAS  Google Scholar 

  24. Wan Ngah WS, Teong LC, Hanafiah M, a KM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456. doi:10.1016/j.carbpol.2010.11.004

    Article  CAS  Google Scholar 

  25. Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:168–177. doi:10.1186/s11671-016-1363-3

    Article  Google Scholar 

  26. Gandhi MR, Meenakshi S (2012) Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). Int J Biol Macromol 50:650–657. doi:10.1016/j.ijbiomac.2012.01.012

    Article  Google Scholar 

  27. Budnyak T, Tertykh V, Yanoska E (2014) Chitosan immobilized on silica surface for wastewater treatment. Mater Sci 20:177–182. doi:10.5755/j01.ms.20.2.4975

    Google Scholar 

  28. Shirosaki Y, Tsuru K, Hayakawa S et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5:346–355. doi:10.1016/j.actbio.2008.07.022

    Article  CAS  Google Scholar 

  29. Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane. Biomaterials 26:485–493. doi:10.1016/j.biomaterials.2004.02.056

    Article  CAS  Google Scholar 

  30. Innocenzi P, Kidchob T, Yoko T (2005) Hybrid organic-inorganic sol–gel materials based on epoxy-amine systems. J Sol–Gel Sci Technol 35:225–235. doi:10.1007/s10971-005-2290-4

    Article  CAS  Google Scholar 

  31. Dukat M, Abdel-Rahman A a, Ismaiel AM et al (1996) Structure–activity relationships for the binding of arylpiperazines and arylbiguanides at 5-HT 3 serotonin receptors. J Med Chem 39:4017–4026

    Article  CAS  Google Scholar 

  32. Sasaki DY, Alam TM (2000) Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels. Chem Mater 12:1400–1407. doi:10.1021/cm990737r

    Article  CAS  Google Scholar 

  33. Bernatowicz MS, Wu Y, Matsueda GR (1992) 1 H-Pyrazole-1-carboxamidine hydrochloride: an attractive reagent for guanylation of amines and its application to peptide synthesis. J Org Chem 57:2497–2504. doi:10.1021/jo00034a059

    Article  CAS  Google Scholar 

  34. Short JH, Darby TD (1967) Sympathetic nervous system blocking agents. 3. Derivatives of benzylguanidine. J Med Chem 10:833–840

    Article  CAS  Google Scholar 

  35. Tsubokura K, Iwata T, Taichi M et al (2014) Direct guanylation of amino groups by cyanamide in water: catalytic generation and activation of unsubstituted carbodiimide by scandium(III) triflate. Synlett 25:1302–1306. doi:10.1055/s-0033-1341080

    Article  Google Scholar 

  36. Kurita K, Ikeda H, Yoshida Y et al (2002) Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules 3:1–4. doi:10.1021/bm0101163

    Article  CAS  Google Scholar 

  37. Connell LS, Romer F, Suárez M et al (2014) Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J Mater Chem B 2:668. doi:10.1039/c3tb21507e

    Article  CAS  Google Scholar 

  38. Toskas G, Cherif C, Hund R et al (2013) Chitosan (PEO)/ silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94:713–722. doi:10.1016/j.carbpol.2013.01.068

    Article  CAS  Google Scholar 

  39. Gong R, Ye J, Dai W et al (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res 52:14297–14303. doi:10.1021/ie402138w

    Article  CAS  Google Scholar 

  40. Zhang S, Xu F, Wang Y et al (2013) Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chem Eng J 234:33–42. doi:10.1016/j.cej.2013.08.102

    Article  CAS  Google Scholar 

  41. Lorencgrabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dye Pigment 74:34–40. doi:10.1016/j.dyepig.2006.01.027

    Article  CAS  Google Scholar 

  42. Periasamy K, Namasivayam C (1995) Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: peanut hulls. Waste Manag 15:63–68. doi:10.1016/0956-053X(94)00071-S

    Article  CAS  Google Scholar 

  43. Greluk M, Hubicki Z (2010) Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chem Eng J 162:919–926. doi:10.1016/j.cej.2010.06.043

    Article  CAS  Google Scholar 

  44. Zhao B, Zhang X, Dou C, Han R (2015) Adsorption property of methyl orange by chitosan coated on quartz sand in batch mode. Desalin Water Treat 55:1598–1608. doi:10.1080/19443994.2014.925834

    Article  CAS  Google Scholar 

  45. Obeid L, Bée A, Talbot D et al (2013) Chitosan/maghemite composite: a magsorbent for the adsorption of methyl orange. J Colloid Interface Sci 410:52–58. doi:10.1016/j.jcis.2013.07.057

    Article  CAS  Google Scholar 

  46. Tanhaei B, Ayati A, Lahtinen M, Sillanpää M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption. Chem Eng J 259:1–10. doi:10.1016/j.cej.2014.07.109

    Article  CAS  Google Scholar 

  47. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223. doi:10.1021/i160018a011

    Article  CAS  Google Scholar 

  48. Hammed AK, Dewayanto N, Du D et al (2016) Novel modified ZSM-5 as an efficient adsorbent for methylene blue removal. J Environ Chem Eng 4:2607–2616. doi:10.1016/j.jece.2016.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Université de Montpellier and the Egyptian Government for financial support. The authors are indebted to Christine Biolley for solid-state NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Salama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, A., Hesemann, P. Synthesis of N-Guanidinium-Chitosan/Silica Hybrid Composites: Efficient Adsorbents for Anionic Pollutants. J Polym Environ 26, 1986–1997 (2018). https://doi.org/10.1007/s10924-017-1093-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1093-3

Keywords

Navigation