Skip to main content
Log in

Tin Modified Fe2O3 Thick Films for Monitoring Environmental and Industrial Pollutant Gases

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Main purpose of the current work was to study the effect of tin (Sn) addition on the synthesized iron oxide (Fe2O3). The catalytic nature of tin (Sn) can alter the structural, electrical and gas sensing properties of Fe2O3. The hazardous and pollutant gases can be sensed using Sn added Fe2O3 films. The Fe2O3 nanoparticles were synthesized using the co-precipitation method. 1, 3, 5, and 7 wt. % tin was added in iron oxide. The structural parameters of prepared gas sensor films were analyzed using X-Ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX). Williamson Hall plots were used to find out the microstructural parameters of the prepared films. The crystallite size was revealed to be below 10 nm. SEM micrograph revealed agglomerated, spherical, and granular nature with voids. The specific surface area was found to augment with an increase in tin doping. EDX exploration showed that films were non-stoichiometric i.e. oxygen deficient. The gas-sensing performance of the tin-modified Fe2O3 films was tested against pollutant gases like ethanol, ammonia LPG, NO2, and petrol vapors. Excellent relative response and selectivity was recorded in presence of LPG. The Sn added Fe2O3 films performed as an effective LPG gas sensor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miller D, Sheikh A, Morris P (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens Actuators B Chem 204:250–272. https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  2. Dey A (2018) Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 229:206–217. https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  3. KhunKhun K, Mahajan A, Bedi R (2009) SnO2 thick films for room temperature gas sensing applications. J Appl Phys. https://doi.org/10.1063/1.3273323

    Article  Google Scholar 

  4. Balouria V, Kumar A, Samanta S, Singh A, Debnath A, Mahajan A, Gupta S (2013) Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens Actuators B: Chem 181:471–478. https://doi.org/10.1016/j.snb.2013.02.013

    Article  CAS  Google Scholar 

  5. Balouria V, Ramgir N, Singh A, Debnath A, Mahajan A, Bedi R, Gupta S (2015) Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films. Sens Actuators B: Chem 219:125–132. https://doi.org/10.1016/j.snb.2015.04.113

    Article  CAS  Google Scholar 

  6. Mirzaei A, Hashemi B, Janghorban K (2015) α-Fe2O3 based nanomaterials as gas sensors. J Mater Sci Mater Electron 27(4):3109–3144. https://doi.org/10.1007/s10854-015-4200-z

    Article  CAS  Google Scholar 

  7. A. Ali, M. Z. Hira Zafar, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl, 9 (2016) 49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998023/

  8. Alibeigi S, Vaezi M (2018) Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+. Chem Eng Techno 47:777–780. https://doi.org/10.1002/ceat.200800093

    Article  CAS  Google Scholar 

  9. Bhavani P, Reddy N, Reddy I, Sakar M (2017) Manipulation over phase transformation in iron oxide nanoparticles via calcination temperature and their effect on magnetic and dielectric properties. IEEE Trans Magn 9:1–5. https://doi.org/10.1109/TMAG.2017.2715320

    Article  Google Scholar 

  10. Hu Y, Kleiman-Shwarsctein A, Forman A, Hazen D, Park J, McFarland E (2008) Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem Mater 20:3803–3805. https://doi.org/10.1021/cm800144q

    Article  CAS  Google Scholar 

  11. Kleiman-Shwarsctein A, Hu Y, Forman A, Stucky G, McFarland E (2008) Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J Phys Chem C 112:15900–15907. https://doi.org/10.1021/jp803775j

    Article  CAS  Google Scholar 

  12. Xiao Z, Li J, Zhong J, Hu W, Zeng J, Huang S, Li M (2014) Enhanced photocatalytic decolorization of methyl orange by gallium-doped α-Fe2O3. Mater Sci Semicond Process 24:104–109. https://doi.org/10.1016/j.mssp.2014.03.028

    Article  CAS  Google Scholar 

  13. Guo L, Chen F, Fan X, Cai W, Zhang J (2010) S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol. Appl Catal B 96:162–168. https://doi.org/10.1016/j.apcatb.2010.02.015

    Article  CAS  Google Scholar 

  14. Wei Y, Han S, Walker D, Warren S, Grzybowski B (2012) Enhanced photocatalytic activity of hybrid Fe2O3–Pd nanoparticulate catalysts. Chem Sci 3:1090–1094. https://doi.org/10.1039/C2SC00673A

    Article  CAS  Google Scholar 

  15. Tang H, Yin W, Matin M, Wang H, Deutsch T, Al-Jassim M, Yan Y (2012) Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting. J Appl Phys 111:073502. https://doi.org/10.1063/1.3699016

    Article  CAS  Google Scholar 

  16. Thimsen E, Formal F, Grätzel M, Warren S (2011) Influence of plasmonic Au nanoparticles on the photo activity of Fe2O3 electrodes for water splitting. Nano Lett 11:35–43. https://doi.org/10.1021/nl1022354

    Article  CAS  PubMed  Google Scholar 

  17. Jang J, Yoon K, Xiao X, Fan F, Bard A (2009) Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: effects of Ag−Fe2O3 nanocomposite and Sn doping. Chem Mater 21:4803–4810. https://doi.org/10.1021/cm901056c

    Article  CAS  Google Scholar 

  18. Deshmane V, Patil A (2019) Synergy of semiconductor (Hematite) & catalytic (Ni) properties enhance gas sensing behavior to NO2. Mater Res Express 6:075910. https://doi.org/10.1088/2053-1591/ab165e

    Article  CAS  Google Scholar 

  19. Deshmane V, Patil A (2019) Study of In2O3& α-Fe2O3 nano-composite as a petrol vapor sensor. Mater. Res. Express 6:025904. https://doi.org/10.1088/2053-1591/aaed90/meta

    Article  Google Scholar 

  20. Ristić M, Popović S, Tonković M, Music S (1991) Chemical and structural properties of the system Fe2O3-In2O3. J Mater Sci 26:4225–4233. https://doi.org/10.1007/BF02402973

    Article  Google Scholar 

  21. Pandey B, Shahi A, Shah J, Kotnala R, Gopal R (2013) Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media. Appl Surf Sci 289(289):462–471. https://doi.org/10.1016/j.apsusc.2013.11.009

    Article  CAS  Google Scholar 

  22. Singh R, Koli P, Jagdale B, Patil A (2019) Effect of firing temperature on structural and electrical parameters of synthesized CeO2 thick films. SN App Sci. https://doi.org/10.1007/s42452-019-0246-5

    Article  Google Scholar 

  23. Shinde R, Khairnar S, Patil M, Adole V, Koli P, Deshmane V, Halwar D, Shinde R, Pawar T, Jagdale B, Patil A (2022) Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. J Inorg Organomet Polym Mater 32:1045–1066. https://doi.org/10.1007/s10904-021-02178-9

    Article  CAS  Google Scholar 

  24. Mizsei J (2016) Forty Years of Adventure with Semiconductor Gas Sensors. Procedia Eng 168:221–226. https://doi.org/10.1016/j.proeng.2016.11.167

    Article  CAS  Google Scholar 

  25. M. Ivanovskaya, Ceramic and film metal oxide sensors obtained by sol-gel method: structural features and gas-sensitive properties, Electron Technol. 33 (2000) 108–112. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BWA1-0001-0917

  26. Garje A, Sadakale S (2013) LPG sensing properties of platinum dopes nano-crystalline SnO2 based thick films with the effect of dipping time and sintering temperature. Adv Mater Lett 4910:58–63

    Article  Google Scholar 

  27. Windischmann H (1979) A model for the operation of a thin-film SnO x conductance-modulation carbon monoxide sensor. J Electrochem. Soc. 126:627. https://doi.org/10.1149/1.2129098/meta

    Article  CAS  Google Scholar 

  28. Sorescu M, Xu T, Diamandescu L, Hileman D (2011) Synthesis and characterization of indium oxide-hematite magnetic ceramic solid solution. Hyperfine Interact 199:365–386. https://doi.org/10.1007/s10751-011-0267-y

    Article  CAS  Google Scholar 

  29. Morganti KJ, Foong TM, Brear MJ, da Silva G, Yang Y, Dryer FL (2013) The research and motor octane numbers of liquefied petroleum gas (LPG). Fuel 108(2013):797–811. https://doi.org/10.1016/j.fuel.2013.01.072

    Article  CAS  Google Scholar 

  30. Deshmane V, Patil A (2020) Cobalt oxide doped hematite as petrol vapor sensor. Mater Chem Phys 246:122813. https://doi.org/10.1016/j.matchemphys.2020.122813

    Article  CAS  Google Scholar 

  31. Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D (2006) A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B Chem 114:910–915. https://doi.org/10.1016/j.snb.2005.08.010

    Article  CAS  Google Scholar 

  32. Hjiri M (2020) Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol-gel technique. J Mater Sci Mater Elec. https://doi.org/10.1007/s10854-020-03069-4

    Article  Google Scholar 

  33. Hao D, Jinliang M, Fang Y, Pingyi G, Xiao J (2019) Size and morphology dependent gas-sensing selectivity towards acetone vapor based on controlled hematite nano/microstructure (0D to 3D). J Solid State Chem. https://doi.org/10.1016/j.jssc.2019.04.025

    Article  Google Scholar 

  34. Jadhav V, Patil S, Shinde D, Waghmare S, Zate M, Mane R, Sung-Hwan H (2013) Hematite nanostructures: Morphology-mediated liquefied petroleum gas sensors. Sens Actuators B: Chem 188:669–674. https://doi.org/10.1016/j.snb.2013.07.072

    Article  CAS  Google Scholar 

  35. Garcia-Osorio D, Hidalgo-Falla P, Peres H, Gonçalves J, Araki K, Garcia-Segura S, Picasso G (2021) silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature. Sensors. https://doi.org/10.3390/s21020440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen H, Jin K, Wang P, Xu J, Han Y, Jin H, Jin D, Peng X, Hong B, Li J, Yang Y, Gong J, Ge H, Wang X (2018) Highly enhanced gas-sensing properties of indium-doped mesoporous hematite nanowires. J Phys Chem Solids 120:271–278. https://doi.org/10.1016/j.jpcs.2018.05.004

    Article  CAS  Google Scholar 

  37. Kima D, Kimb T, Sohnb W, Suhb J, Shimc Y, Kwonb K, Hongb K, Choib S, Byund H, Leea J, Jang H (2018) Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath. Sens Actuators B: Chem 274:587–594. https://doi.org/10.1016/j.snb.2018.07.159

    Article  CAS  Google Scholar 

  38. Hu J, Xiong X, Guan W, Long H (2022) Urchin-like PdO–Fe2O3 heterojunctions for high-performance hydrogen sulfide gas sensors. Ceram Int 48–8:10562–10573. https://doi.org/10.1016/j.ceramint.2021.12.269

    Article  CAS  Google Scholar 

  39. Zhuang Z, Zhang L, Huang C, Wang X, Guo H, Thomas T, Qu F, Wang P, Yang M (2022) A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe2O3 nanocrystals. Nanotechnology. https://doi.org/10.1088/1361-6528/ac614c

    Article  PubMed  Google Scholar 

  40. Thua N, Cuong N, Nguyena L, Khieub D, Namd P, Toane N, Hunge C, Hieu N (2017) Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor. Sens Actuators B: Chem. https://doi.org/10.1016/j.snb.2017.09.154

    Article  Google Scholar 

Download references

Acknowledgements

The authors also would like to thank the Department of Chemistry and Department of Physics, MGV’s Arts, Science and Commerce College, Manmad, Nashik, MS, India. The authors would also like to thank the Department of Physics, SICES Degree College, Ambarnath, Thane, MS, India and Thick and thin film laboratory, M.S.G. College, Malegaon, Nashik, Maharashtra, India

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun V. Patil.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest of any sort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmane, V.V., Shinde, S., Halwar, D.K. et al. Tin Modified Fe2O3 Thick Films for Monitoring Environmental and Industrial Pollutant Gases. Chemistry Africa 5, 1069–1082 (2022). https://doi.org/10.1007/s42250-022-00398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00398-1

Keywords

Navigation