Skip to main content

Advertisement

Log in

A comprehensive study on the development of ceramic membranes from natural Kashmir clay and its application in pH-mediated removal of Indigo carmine dye

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This work reports the comprehensive fabrication, characterization, and application of ceramic membranes prepared from natural and pure Kashmir clay. The membranes were prepared from different raw material sizes (-60, -80, -120, and -200 ASTM mesh), compaction pressures (50–200 MPa), and sintering temperatures (800–950℃), to determine the effect of fabrication conditions on membrane properties. FESEM, XRD, porosity, water permeation, and chemical stability tests were performed for the characterization of the membranes. Depending on the fabrication conditions, the membranes ranged in porosity from 14.45 to 57.05%, pore sizes between 13.05 to 189.96 nm, and water permeability between 0.22 to 37.7 × 10–8 m3/m2.s.kPa. Furthermore, one of the membranes S3P4T1 with a porosity of 28.21%, pore size of 13.05 nm and water permeability of 0.22 × 10–8 m3/m2.s.kPa was used for the removal of an anionic dye, Indigo carmine. The effect of pH (1–11), applied pressure (1–4 bar) and initial concentration of dye (5–100 ppm) was studied on the permeate flux and rejection. The membrane achieved the highest rejection of 98.54% for a dye concentration of 100 ppm, applied pressure of 2 bars and pH 1, revealing the significant influence of pH on dye removal efficiency. Also, the application of Hermia's models identified cake filtration as the main cause of flux decline. These results confirm the suitability of the Kashmir clay membranes for filtration applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. B.L. Dargaville, D.W. Hutmacher, Water as the often neglected medium at the interface between materials and biology. Nat. Commun. 13, 4222 (2022). https://doi.org/10.1038/s41467-022-31889-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. OboteyEzugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020). https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  3. D. Zheng, K. Wang, B. Bai, A critical review of sodium alginate-based composites in water treatment. Carbohydr. Polym. 331, 121850 (2024). https://doi.org/10.1016/j.carbpol.2024.121850

    Article  CAS  PubMed  Google Scholar 

  4. G. Mujtaba, M.U.H. Shah, A. Hai, M. Daud, M. Hayat, A holistic approach to embracing the United Nation’s Sustainable Development Goal (SDG-6) towards water security in Pakistan. J. Water Process Eng. 57, 104691 (2024). https://doi.org/10.1016/j.jwpe.2023.104691

    Article  Google Scholar 

  5. R. Singh, Membrane technology and engineering for water purification, 2nd edn. (Butterworth-Heinemann, 2015)

    Google Scholar 

  6. R.I. McDonald, P. Green, D. Balk, B.M. Fekete, C. Revenga, M. Todd, M. Montgomery, Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. 108, 6312–6317 (2011). https://doi.org/10.1073/pnas.1011615108

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, B.A. Bryan, Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Okello, B. Tomasello, N. Greggio, N. Wambiji, M. Antonellini, Impact of population growth and climate change on the freshwater resources of Lamu Island, Kenya. Water 7, 1264–1290 (2015). https://doi.org/10.3390/w7031264

    Article  Google Scholar 

  9. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  10. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches. J. Environ. Manage. 182, 351–366 (2016). https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  PubMed  Google Scholar 

  11. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145–1158 (2017). https://doi.org/10.1016/j.cej.2017.06.054

    Article  CAS  Google Scholar 

  12. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697 (2018). https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  13. K. Mojsov, D. Andronikov, A. Janevski, A. Kuzelov, S. Gaber, The application of enzymes for the removal of dyes from textile effluents. Adv. Technol. 5, 81–86 (2016). https://doi.org/10.5937/savteh1601081M

    Article  Google Scholar 

  14. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016). https://doi.org/10.1016/j.susmat.2016.06.002

    Article  CAS  Google Scholar 

  15. J. Dasgupta, M. Singh, J. Sikder, V. Padarthi, S. Chakraborty, S. Curcio, Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotoxicol. Environ. Saf. 121, 271–278 (2015). https://doi.org/10.1016/j.ecoenv.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  16. H. Rondon, W. El-Cheikh, I.A.R. Boluarte, C.-Y. Chang, S. Bagshaw, L. Farago, V. Jegatheesan, L. Shu, Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. Bioresour. Technol. 183, 78–85 (2015). https://doi.org/10.1016/j.biortech.2015.01.110

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhang, Q. Zhou, L. Ou, Removal of indigo carmine from aqueous solution by microwave-treated activated carbon from peanut shell. Desalination Water Treat. 57, 718–727 (2016). https://doi.org/10.1080/19443994.2014.967729

    Article  CAS  Google Scholar 

  18. S.P. Singh, S. Kaur, D. Singh, Toxicological profile of Indian foods—ensuring food safety in India, in Food Saf. 21st Century. (Elsevier, 2017), pp. 111–127. https://doi.org/10.1016/B978-0-12-801773-9.00009-1.

  19. J. Echeverría-Pérez, W. Carvajal-Palacio, L. Gómez-Plata, V. Vacca-Jimeno, N. Cubillán, Corn cobs and KOH-treated biomasses for indigo carmine removal: kinetics and isotherms. Emergent Mater. 6, 1217–1229 (2023). https://doi.org/10.1007/s42247-023-00526-8

    Article  CAS  Google Scholar 

  20. J. Trujillo-Reyes, V. Sánchez-Mendieta, A. Colín-Cruz, R.A. Morales-Luckie, Removal of Indigo Blue in aqueous solution using Fe/Cu nanoparticles and C/Fe–Cu nanoalloy composites. Water Air Soil Pollut. 207, 307–317 (2010). https://doi.org/10.1007/s11270-009-0138-1

    Article  CAS  Google Scholar 

  21. M.F. Chowdhury, S. Khandaker, F. Sarker, A. Islam, M.T. Rahman, Md.R. Awual, Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: a review. J. Mol. Liq. 318, 114061–114061 (2020). https://doi.org/10.1016/j.molliq.2020.114061

    Article  CAS  Google Scholar 

  22. Q. Sun, L. Yang, The adsorption of basic dyes from aqueous solution on modified peat–resin particle. Water Res. 37, 1535–1544 (2003). https://doi.org/10.1016/S0043-1354(02)00520-1

    Article  CAS  PubMed  Google Scholar 

  23. S. Torbati, A.R. Khataee, A. Movafeghi, Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: Investigation of some physiological responses and effects of operational parameters. Chem. Eng. Res. Des. 92, 1934–1941 (2014). https://doi.org/10.1016/j.cherd.2014.04.022

    Article  CAS  Google Scholar 

  24. F. Torrades, J. García-Montaño, Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes Pigments 100, 184–189 (2014). https://doi.org/10.1016/j.dyepig.2013.09.004

    Article  CAS  Google Scholar 

  25. C.-Z. Liang, S.-P. Sun, F.-Y. Li, Y.-K. Ong, T.-S. Chung, Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 469, 306–315 (2014). https://doi.org/10.1016/j.memsci.2014.06.057

    Article  CAS  Google Scholar 

  26. E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004). https://doi.org/10.1016/j.envint.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  27. N. Manavi, A.S. Kazemi, B. Bonakdarpour, The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chem. Eng. J. 312, 375–384 (2017). https://doi.org/10.1016/j.cej.2016.11.155

    Article  CAS  Google Scholar 

  28. S. Rodríguez Couto, Dye removal by immobilised fungi. Biotechnol. Adv. 27, 227–235 (2009). https://doi.org/10.1016/j.biotechadv.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  29. N. Ghafourian, S.N. Hosseini, Z. Mahmoodi, N. Masnabadi, M.R. Thalji, A.R. Abhari, W. Al Zoubi, K.F. Chong, G.A.M. Ali, Z.H. Bakr, TiO2-Mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation. Emergent Mater. 6, 1527–1536 (2023). https://doi.org/10.1007/s42247-023-00552-6

    Article  CAS  Google Scholar 

  30. L. Sawunyama, O.C. Olatunde, O.A. Oyewo, M.F. Bopape, D.C. Onwudiwe, Application of coal fly ash based ceramic membranes in wastewater treatment: a sustainable alternative to commercial materials. Heliyon 10, e24344 (2024). https://doi.org/10.1016/j.heliyon.2024.e24344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P.S. Goh, K.C. Wong, A.F. Ismail, Membrane technology: a versatile tool for saline wastewater treatment and resource recovery. Desalination 521, 115377 (2022). https://doi.org/10.1016/j.desal.2021.115377

    Article  CAS  Google Scholar 

  32. E.H. Khader, T.J. Mohammed, T.M. Albayati, H.N. Harharah, A. Amari, N.M.C. Saady, S. Zendehboudi, Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: a review. Chem. Eng. Process. - Process Intensif. 192, 109503 (2023). https://doi.org/10.1016/j.cep.2023.109503

    Article  CAS  Google Scholar 

  33. B. Van der Bruggen, Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep. Purif. Technol. 22–23, 519–528 (2001). https://doi.org/10.1016/S1383-5866(00)00134-9

    Article  Google Scholar 

  34. H. Ouni, A. Hafiane, M. Dhahbi, The effect of surfactant on dye removal by polyelectrolyte enhanced ultrafiltration. Desalination Water Treat. 56, 1526–1535 (2015). https://doi.org/10.1080/19443994.2014.952670

    Article  CAS  Google Scholar 

  35. A. Aouni, C. Fersi, M. Ben Sik Ali, M. Dhahbi, Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J. Hazard. Mater. 168, 868–874 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.112

    Article  CAS  PubMed  Google Scholar 

  36. S. Foorginezhad, M.M. Zerafat, Microfiltration of cationic dyes using nano-clay membranes. Ceram. Int. 43, 15146–15159 (2017). https://doi.org/10.1016/j.ceramint.2017.08.045

    Article  CAS  Google Scholar 

  37. A. Agarwalla, K. Mohanty, Comprehensive characterization, development, and application of natural/Assam Kaolin-based ceramic microfiltration membrane. Mater. Today Chem. 23, 100649–100649 (2022). https://doi.org/10.1016/j.mtchem.2021.100649

    Article  CAS  Google Scholar 

  38. P. Bhattacharya, D. Mukherjee, N. Deb, S. Swarnakar, S. Banerjee, Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: Toxicity evaluation in PA-1 cell line. Mater. Chem. Phys. 258, 123920–123920 (2021). https://doi.org/10.1016/j.matchemphys.2020.123920

    Article  CAS  Google Scholar 

  39. N. Ahmed, F.Q. Mir, Preparation and characterization of ceramic membrane using waste almond shells as pore forming agent. Mater. Today Proc. 47, 1485–1489 (2021). https://doi.org/10.1016/j.matpr.2021.04.329

    Article  CAS  Google Scholar 

  40. H. Yuan, J. Liu, X. Zhang, L. Chen, Q. Zhang, L. Ma, Recent advances in membrane-based materials for desalination and gas separation. J. Clean. Prod. 387, 135845 (2023). https://doi.org/10.1016/j.jclepro.2023.135845

    Article  CAS  Google Scholar 

  41. A.S. Reddy, P. Sharda, S.P. Nehra, A. Sharma, Advanced strategies in MOF-based mixed matrix membranes for propylene/propane separation: a critical review. Coord. Chem. Rev. 498, 215435 (2024). https://doi.org/10.1016/j.ccr.2023.215435

    Article  CAS  Google Scholar 

  42. Z. Zhang, G. Huang, Y. Li, X. Chen, Y. Yao, S. Ren, M. Li, Y. Wu, C. An, Electrically conductive inorganic membranes: a review on principles, characteristics and applications. Chem. Eng. J. 427, 131987 (2022). https://doi.org/10.1016/j.cej.2021.131987

    Article  CAS  Google Scholar 

  43. A.B. Olabintan, E. Ahmed, H. Al Abdulgader, T.A. Saleh, Hydrophobic and oleophilic amine-functionalised graphene/polyethylene nanocomposite for oil–water separation. Environ. Technol. Innov. 27, 102391 (2022). https://doi.org/10.1016/j.eti.2022.102391

    Article  CAS  Google Scholar 

  44. Y. Xin, B. Qi, X. Wu, C. Yang, B. Li, Different types of membrane materials for oil-water separation: status and challenges. Colloid Interface Sci. Commun. 59, 100772 (2024). https://doi.org/10.1016/j.colcom.2024.100772

    Article  CAS  Google Scholar 

  45. J. Ma, W. Chen, J. Qian, A. Shui, B. Du, C. He, Co-pressing and co-sintering preparation of cost-effective and high-performance asymmetric ceramic membrane for oily wastewater treatment. Sep. Purif. Technol. 323, 124373 (2023). https://doi.org/10.1016/j.seppur.2023.124373

    Article  CAS  Google Scholar 

  46. A. El-Kordy, A. Elgamouz, A. Abdelhamid, A.-N. Kawde, N. Tijani, E.M. Lemdek, Manufacturing of novel zeolite-clay composite membrane from natural clay and diatomite, an electrochemical study of the surface and application towards heavy metals removal. J. Environ. Chem. Eng. 12, 112143 (2024). https://doi.org/10.1016/j.jece.2024.112143

    Article  CAS  Google Scholar 

  47. N. Ahmed, F.Q. Mir, Chromium(VI) removal using micellar enhanced microfiltration (MEMF) from an aqueous solution: Fouling analysis and use of ANN for predicting permeate flux. J. Water Process Eng. 44, 102438–102438 (2021). https://doi.org/10.1016/j.jwpe.2021.102438

    Article  Google Scholar 

  48. S. Foorginezhad, M.M. Zerafat, Y. Mohammadi, M. Asadnia, Fabrication of tubular ceramic membranes as low-cost adsorbent using natural clay for heavy metals removal. Clean. Eng. Technol. 10, 100550 (2022). https://doi.org/10.1016/j.clet.2022.100550

    Article  Google Scholar 

  49. J. He, X. Cai, K. Chen, Y. Li, K. Zhang, Z. Jin, F. Meng, N. Liu, X. Wang, L. Kong, X. Huang, J. Liu, Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal. J. Colloid Interface Sci. 484, 162–172 (2016). https://doi.org/10.1016/j.jcis.2016.08.074

    Article  CAS  PubMed  Google Scholar 

  50. P.L. Kiew, C.Y. Ng, L.S. Tan, Y.T. Chung, M.M. Nasef, Advanced membrane technology for removal of ammonia from industrial wastewater, in Resour. Recovery Ind. Waste Waters. (Elsevier, 2023), pp. 421–440. https://doi.org/10.1016/B978-0-323-95327-6.00031-2

  51. D.L. Gao, Y.X. Xue, F.F. Dai, Y.X. Liu, N. Qin, Y.Y. Zhang, J.H. Chen, Q. Yang, Efficient separation of phosphate ions in water using tris(hydroxymethyl)aminomethane modified polyaniline-p-phenylenediamine composite membrane. Sep. Purif. Technol. 331, 125691 (2024). https://doi.org/10.1016/j.seppur.2023.125691

    Article  CAS  Google Scholar 

  52. F. Lipnizki, Cross-flow membrane applications in the food industry, in Membr. Technol. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010), pp. 1–24. https://doi.org/10.1002/9783527631384.ch1

  53. K.V.V. Satyannarayana, R.V. Kumar, Tangential microfiltration of lime and pineapple juices using inexpensive tubular ceramic membrane and analysis of fouling mechanism. Appl. Food Res. 3, 100284 (2023). https://doi.org/10.1016/j.afres.2023.100284

    Article  CAS  Google Scholar 

  54. J. Wen, Y. Chen, Q. Yan, L. Jiang, X. Chen, Y. Fan, Experiment on and modeling of purification of fructooligosaccharides using ceramic nanofiltration membranes. Sep. Purif. Technol. 323, 124508 (2023). https://doi.org/10.1016/j.seppur.2023.124508

    Article  CAS  Google Scholar 

  55. M.D. Alsubei, B. Reid, S.A. Aljlil, M.-O. Coppens, L.C. Campos, Fabrication and characterization of coated ceramic membranes from natural sources for water treatment applications. J. Membr. Sci. 690, 122226 (2024). https://doi.org/10.1016/j.memsci.2023.122226

    Article  CAS  Google Scholar 

  56. N. Chaukura, W. Moyo, T.A. Kajau, A.A. Muleja, B.B. Mamba, T.T. Nkambule, Low-cost ceramic filtration for point-of-use water treatment in low-income countries. Water Secur. 20, 100145 (2023). https://doi.org/10.1016/j.wasec.2023.100145

    Article  Google Scholar 

  57. N.M.A. Omar, M.H.D. Othman, Z.S. Tai, M.F. Rabuni, A.O.A. Amhamed, M.H. Puteh, J. Jaafar, M.A. Rahman, T.A. Kurniawan, Overcoming challenges in water purification by nanocomposite ceramic membranes: a review of limitations and technical solutions. J. Water Process Eng. 57, 104613 (2024). https://doi.org/10.1016/j.jwpe.2023.104613

    Article  Google Scholar 

  58. D.N. Awang Chee, F. Aziz, M.A. Mohamed Amin, A.F. Ismail, ZIF-8 membrane: the synthesis technique and nanofiltration application. Emergent Mater. 5, 1289–1310 (2022). https://doi.org/10.1007/s42247-021-00336-w

    Article  CAS  Google Scholar 

  59. A.K. Shukla, J. Alam, U. Mishra, K.K. Kesari, Investigating the efficiency of a ceramic-based thin-film composite nanofiltration membrane for dyes removal. Ceram. Int. 49, 37670–37679 (2023). https://doi.org/10.1016/j.ceramint.2023.09.093

    Article  CAS  Google Scholar 

  60. K. Banjerdteerakul, H. Peng, K. Li, Ceramic hollow fibre supported covalent organic framework membranes prepared by direct interfacial polymerisation -potential for efficient dye removal from wastewater. J. Membr. Sci. 683, 121852 (2023). https://doi.org/10.1016/j.memsci.2023.121852

    Article  CAS  Google Scholar 

  61. SMd. Mamun Kabir, H. Mahmud, H. Schӧenberger, Recovery of dyes and salts from highly concentrated (dye and salt) mixed water using nano-filtration ceramic membranes. Heliyon 8, e11543 (2022). https://doi.org/10.1016/j.heliyon.2022.e11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Liu, J. Zhao, X. Wen, J. Zhang, H. Zhang, H. Wang, J. Wei, Fabrication of CFOx-PVDF catalytic membrane for removal of dyes in water and its mechanism. Chem. Eng. Res. Des. 198, 14–24 (2023). https://doi.org/10.1016/j.cherd.2023.08.039

    Article  CAS  Google Scholar 

  63. S. Saja, A. Bouazizi, B. Achiou, H. Ouaddari, A. Karim, M. Ouammou, A. Aaddane, J. Bennazha, S. AlamiYounssi, Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal. J. Eur. Ceram. Soc. 40, 2453–2462 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.057

    Article  CAS  Google Scholar 

  64. A. Bouazizi, M. Breida, B. Achiou, M. Ouammou, J.I. Calvo, A. Aaddane, S.A. Younssi, Removal of dyes by a new nano–TiO 2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite. Appl. Clay Sci. 149, 127–135 (2017). https://doi.org/10.1016/j.clay.2017.08.019

    Article  CAS  Google Scholar 

  65. N. Saffaj, M. Persin, S.A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: application to filtration of solution containing dyes and salts. Appl. Clay Sci. 31, 110–119 (2006). https://doi.org/10.1016/j.clay.2005.07.002

    Article  CAS  Google Scholar 

  66. M. Mouiya, A. Bouazizi, A. Abourriche, A. Benhammou, Y. El Hafiane, M. Ouammou, Y. Abouliatim, S.A. Younssi, A. Smith, H. Hannache, Fabrication and characterization of a ceramic membrane from clay and banana peel powder: application to industrial wastewater treatment. Mater. Chem. Phys. 227, 291–301 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.011

    Article  CAS  Google Scholar 

  67. M. Ağtaş, M. Dilaver, İ Koyuncu, Halloysite nanoclay doped ceramic membrane fabrication and evaluation of textile wastewater treatment performance. Process. Saf. Environ. Prot. 154, 72–80 (2021). https://doi.org/10.1016/j.psep.2021.08.010

    Article  CAS  Google Scholar 

  68. S. Foorginezhad, Gh. Rezvannasab, M. Asadnia, Natural clay membranes: A sustainable and affordable solution for treating dye solutions, coal mine washery waste, and aquaculture wastewater. J. Water Process Eng. 54, 104012 (2023). https://doi.org/10.1016/j.jwpe.2023.104012

    Article  Google Scholar 

  69. D. El MachtaniIdrissi, Z.C. Elidrissi, B. Achiou, M. Ouammou, S. AlamiYounssi, Fabrication of low-cost kaolinite/perlite membrane for microfiltration of dairy and textile wastewaters. J. Environ. Chem. Eng. 11, 109281 (2023). https://doi.org/10.1016/j.jece.2023.109281

    Article  CAS  Google Scholar 

  70. J.L. Lin, C. Huang, J.R. Pan, Y.S. Wang, Fouling mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe and Mn removal from groundwater. Colloids Surf. Physicochem. Eng. Asp. 419, 87–93 (2013). https://doi.org/10.1016/j.colsurfa.2012.11.053

    Article  CAS  Google Scholar 

  71. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution. J. Membr. Sci. 379, 154–163 (2011). https://doi.org/10.1016/j.memsci.2011.05.050

    Article  CAS  Google Scholar 

  72. A.R.P. Pizzichetti, C. Pablos, C. Álvarez-Fernández, K. Reynolds, S. Stanley, J. Marugán, Kinetic and mechanistic analysis of membrane fouling in microplastics removal from water by dead-end microfiltration. J. Environ. Chem. Eng. 11, 109338 (2023). https://doi.org/10.1016/j.jece.2023.109338

    Article  CAS  Google Scholar 

  73. T. Poerio, T. Denisi, R. Mazzei, F. Bazzarelli, E. Piacentini, L. Giorno, E. Curcio, Identification of fouling mechanisms in cross-flow microfiltration of olive-mills wastewater. J. Water Process Eng. 49, 103058 (2022). https://doi.org/10.1016/j.jwpe.2022.103058

    Article  Google Scholar 

  74. M. Chen, W. Ding, M. Zhou, H. Zhang, C. Ge, Z. Cui, W. Xing, Fouling mechanism of PVDF ultrafiltration membrane for secondary effluent treatment from paper mills. Chem. Eng. Res. Des. 167, 37–45 (2021). https://doi.org/10.1016/j.cherd.2020.12.021

    Article  CAS  Google Scholar 

  75. N.H.H. Hairom, A.W. Mohammad, A.A.H. Kadhum, Nanofiltration of hazardous Congo red dye: performance and flux decline analysis. J. Water Process Eng. 4, 99–106 (2014). https://doi.org/10.1016/j.jwpe.2014.09.008

    Article  Google Scholar 

  76. G.-Q. Chen, Y.-H. Wu, Y.-J. Tan, Z. Chen, X. Tong, Y. Bai, L.-W. Luo, H.-B. Wang, Y.-Q. Xu, Z.-W. Zhang, N. Ikuno, H.-Y. Hu, Pretreatment for alleviation of RO membrane fouling in dyeing wastewater reclamation. Chemosphere 292, 133471 (2022). https://doi.org/10.1016/j.chemosphere.2021.133471

    Article  CAS  PubMed  Google Scholar 

  77. S. Kim, M. Yu, Y. Yoon, Fouling and retention mechanisms of selected cationic and anionic dyes in a Ti 3 C 2 T x MXene-ultrafiltration hybrid system. ACS Appl. Mater. Interfaces 12, 16557–16565 (2020). https://doi.org/10.1021/acsami.0c02454

    Article  CAS  PubMed  Google Scholar 

  78. N. Ahmed, F.Q. Mir, Fabrication of a cost effective ceramic microfiltration membrane by utilizing local Kashmir Clay. Trans. Indian Ceram. Soc. (2021). https://doi.org/10.1080/0371750X.2020.1864663

    Article  Google Scholar 

  79. R. JamshidiGohari, F. Korminouri, W.J. Lau, A.F. Ismail, T. Matsuura, M.N.K. Chowdhury, E. Halakoo, M.S. JamshidiGohari, A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion. Sep. Purif. Technol. 150, 13–20 (2015). https://doi.org/10.1016/j.seppur.2015.06.031

    Article  CAS  Google Scholar 

  80. N. Ahmed, F.Q. Mir, Box-Behnken design for optimization of iron removal by hybrid oxidation–microfiltration process using ceramic membrane. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07567-0

    Article  Google Scholar 

  81. M.C. Almandoz, J. Marchese, P. Prádanos, L. Palacio, A. Hernández, Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. J. Membr. Sci. 241, 95–103 (2004). https://doi.org/10.1016/j.memsci.2004.03.045

    Article  CAS  Google Scholar 

  82. S. Caprarescu, A.R. Miron, V. Purcar, A.-L. Radu, A. Sarbu, D. Ion-Ebrasu, L.-I. Atanase, M. Ghiurea, Efficient removal of Indigo Carmine dye by a separation process. Water Sci. Technol. 74, 2462–2473 (2016). https://doi.org/10.2166/wst.2016.388

    Article  CAS  PubMed  Google Scholar 

  83. J. Hermia, Constant pressure blocking filtration laws, application to power-law non-Newtonian fluids. Trans. Inst. Chem. Eng. 60, 183–187 (1982)

    CAS  Google Scholar 

  84. Y.-F. Chen, M.-C. Wang, M.-H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24(8), 2389–2397 (2004). https://doi.org/10.1016/S0955-2219(03)00631-9

    Article  CAS  Google Scholar 

  85. Š Csáki, I. Štubňa, T. Kaljuvee, P. Dobroň, F. Lukáč, A. Trník, Electric properties of anorthite ceramics prepared from illitic clay and oil shale ash. J. Mater. Res. Technol. 21, 4164–4173 (2022). https://doi.org/10.1016/j.jmrt.2022.11.030

    Article  CAS  Google Scholar 

  86. A. Harabi, S. Zaiou, A. Guechi, L. Foughali, E. Harabi, N.-E. Karboua, S. Zouai, F.-Z. Mezahi, F. Guerfa, Mechanical properties of anorthite based ceramics prepared from kaolin DD2 and calcite. Cerâmica 63, 311–317 (2017). https://doi.org/10.1590/0366-69132017633672020

    Article  CAS  Google Scholar 

  87. S. Emani, R. Uppaluri, M.K. Purkait, Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination 317, 32–40 (2013). https://doi.org/10.1016/j.desal.2013.02.024

    Article  CAS  Google Scholar 

  88. D. Vasanth, R. Uppaluri, G. Pugazhenthi, Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Sep. Sci. Technol. 46(8), 1241–1249 (2011). https://doi.org/10.1080/01496395.2011.556097

    Article  CAS  Google Scholar 

  89. S. Emani, R. Uppaluri, M.K. Purkait, Microfiltration of oil–water emulsions using low cost ceramic membranes prepared with the uniaxial dry compaction method. Ceram. Int. 40, 1155–1164 (2014). https://doi.org/10.1016/j.ceramint.2013.06.117

    Article  CAS  Google Scholar 

  90. F. Bouzerara, A. Harabi, S. Achour, A. Larbot, Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. J. Eur. Ceram. Soc. 26, 1663–1671 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.244

    Article  CAS  Google Scholar 

  91. B.K. Nandi, R. Uppaluri, M.K. Purkait, Identification of optimal membrane morphological parameters during microfiltration of mosambi juice using low cost ceramic membranes. LWT - Food Sci. Technol. 44(1), 214–223 (2011). https://doi.org/10.1016/j.lwt.2010.06.026

    Article  CAS  Google Scholar 

  92. J. Yadav, O. Sahu, Malachite green dye purification from effluent using synthesized ceramic clay: characterisation; optimization and scale up. Ceram. Int. 49, 24831–24851 (2023). https://doi.org/10.1016/j.ceramint.2023.05.010

    Article  CAS  Google Scholar 

  93. N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohamma, M. Abu Arabi, A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170, 281–308 (2004). https://doi.org/10.1016/j.desal.2004.01.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Research Facility (CRF), National Institute of Technology, Srinagar for helping with the XRD and FESEM analysis of the samples.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Nasir Ahmed: Investigation, Data curation, Formal analysis, Software, Validation, Writing-Original Draft, Visualization. Fasil Qayoom Mir: Conceptualization, Methodology, Writing—Review & Editing, Supervision, Project administration, Resources.

Corresponding author

Correspondence to Fasil Qayoom Mir.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Highlights

• Detailed development and application of pure Kashmir clay ceramic membranes is reported.

• The membranes exhibit tunable porosity (14.45-57.05%), pore size (13.05-189.96 nm), and water permeability (0.22-37.7 × 10-8 m3/m2.s.kPa) depending on fabrication conditions.

• Membrane S3P4T1 achieved a maximum rejection of 98.54% at pH 1 for Indigo carmine, revealing a significant influence of solution pH on dye separation.

• Fouling analysis revealed cake filtration to be the dominant form of fouling during dye removal.

• Kashmir clay is a promising material for the development of ceramic membranes.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Mir, F.Q. A comprehensive study on the development of ceramic membranes from natural Kashmir clay and its application in pH-mediated removal of Indigo carmine dye. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00695-0

Keywords

Navigation