Skip to main content
Log in

Box–Behnken design for optimization of iron removal by hybrid oxidation–microfiltration process using ceramic membrane

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work reports the preparation and application of a microfiltration membrane based on kaolin. The membrane is characterized using various techniques such as XRD, FESEM, porosity, pure water permeation, and chemical stability tests. The fabricated membrane with a pore size of 1.66 μm, porosity of 45.46%, and pure water permeability of 1.8 × 10−8 (m3 m−2 s−1 kPa−1) was utilized for studying iron removal from an aqueous solution by hybrid oxidation–microfiltration process. Response surface methodology (RSM) via Box–Behnken design (BBD) was used to study the effect of different input parameters (applied pressure, oxidant dosage, and initial concentration of iron) on permeate flux and iron removal. The experimental data were analysed using a model based on a second-order polynomial, which was then statistically confirmed. Analysis of variance (ANOVA) was used to develop and test the quadratic models between each response and the independent variables. The p value and F-values of the models developed for both the responses indicated the developed models were highly significant. The optimum conditions were found to be at an initial iron concentration of 49.95 mg L−1, an oxidant dose of 22.38 mg L−1, and applied pressure of 3.05 bar at which the permeate flux and rejection reported values of 1.32 × 10−6 m3 m−2 s−1 and 83.05%, respectively. These results agreed quite well with the experimental values. Based on these results the optimization of the microfiltration process using BBD was reliable in predicting the performance within the limits of the input parameters employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Singh R (2015) Membrane technology and engineering for water purification, 2nd edn. Butterworth-Heinemann

    Google Scholar 

  2. Garg NK, Hassan Q (2007) Alarming scarcity of water in India. Curr Sci 93:932–941

    Google Scholar 

  3. Silver J (1993) Introduction to iron chemistry. In: Chemistry of iron. Springer Netherlands, Dordrecht.

  4. Chaturvedi S, Dave PN (2012) Removal of iron for safe drinking water. Desalination 303:1–11. https://doi.org/10.1016/j.desal.2012.07.003

    Article  CAS  Google Scholar 

  5. Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8:23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  6. bin Jusoh A, Cheng WH, Low WM et al (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination 182(1–3):347–353. https://doi.org/10.1016/j.desal.2005.03.022

    Article  CAS  Google Scholar 

  7. Tekerlekopoulou AG, Pavlou S, Vayenas DV (2013) Removal of ammonium, iron and manganese from potable water in biofiltration units: a review. J Chem Technol Biotechnol 88:751–773. https://doi.org/10.1002/jctb.4031

    Article  CAS  Google Scholar 

  8. Ellis D, Bouchard C, Lantagne G (2000) Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination 130:255–264. https://doi.org/10.1016/S0011-9164(00)00090-4

    Article  CAS  Google Scholar 

  9. Samantha SK (2020) Ground water year book of West Bengal & Andaman & Nicobar Islands.

  10. Kumar V, Bharti PK, Talwar M et al (2017) Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci 31:44–51. https://doi.org/10.1016/j.wsj.2017.02.003

    Article  Google Scholar 

  11. Mahanta DB, Das NN, Dutta RK (2004) A chemical and bacteriological study of drinking water in tea gardens of central Assam. Indian J Environ Prot 24:654–660

    CAS  Google Scholar 

  12. Kalita PJ, Gogoi C, Bhattacharyya SM, Goswamee RL (2021) Hydro chemical assessment of ground water in North-Eastern Region of India: a case study of western suburb of Jorhat town of Assam India. Curr World Environ 16:1–2. https://doi.org/10.12944/CWE.16.1.04

    Article  Google Scholar 

  13. Rayees Ahmad Pir (2020) Ground water year book 2018–19 Jammu & Kashmir.

  14. Zheng Q, Zhao Y, Guo J et al (2017) Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk Res 58:55–62. https://doi.org/10.1016/j.leukres.2017.04.005

    Article  CAS  Google Scholar 

  15. Hartmann J, Braulke F, Sinzig U et al (2013) Iron overload impairs proliferation of erythroid progenitors cells (BFU-E) from patients with myelodysplastic syndromes. Leuk Res 37:327–332. https://doi.org/10.1016/j.leukres.2012.11.005

    Article  CAS  Google Scholar 

  16. Chai X, Li D, Cao X et al (2015) ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5:1–11. https://doi.org/10.1038/srep10181

    Article  CAS  Google Scholar 

  17. Shao L, Li H, Pazhanisamy SK et al (2011) Reactive oxygen species and hematopoietic stem cell senescence. Int J Hematol 94:24–32. https://doi.org/10.1007/s12185-011-0872-1

    Article  CAS  Google Scholar 

  18. Prus E, Fibach E (2010) Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol 123:14–20. https://doi.org/10.1159/000258958

    Article  CAS  Google Scholar 

  19. Alimohammadi V, Sedighi M, Jabbari E (2017) Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol Eng 102:90–97. https://doi.org/10.1016/j.ecoleng.2017.01.044

    Article  Google Scholar 

  20. Das B, Hazarika P, Saikia G et al (2007) Removal of iron from groundwater by ash: a systematic study of a traditional method. J Hazard Mater 141:834–841. https://doi.org/10.1016/j.jhazmat.2006.07.052

    Article  CAS  Google Scholar 

  21. Michalakos G (1997) Removal of iron from potable water using a trickling filter. Water Res 31:991–996. https://doi.org/10.1016/S0043-1354(96)00343-0

    Article  CAS  Google Scholar 

  22. Phatai P, Wittayakun J, Chen W-H et al (2014) Removal of manganese(II) and iron(II) from synthetic groundwater using potassium permanganate. Desalination Water Treat 52:5942–5951. https://doi.org/10.1080/19443994.2013.819150

    Article  CAS  Google Scholar 

  23. Du X, Liu G, Qu F et al (2017) Removal of iron, manganese and ammonia from groundwater using a PAC-MBR system: The anti-pollution ability, microbial population and membrane fouling. Desalination 403:97–106. https://doi.org/10.1016/j.desal.2016.03.002

    Article  CAS  Google Scholar 

  24. Jasiewicz K, Pietrzak R (2013) The influence of pore generating agent on the efficiency of copper and iron ions removal from liquid phase by polyethersulfone membranes. Chem Eng J 228:449–454. https://doi.org/10.1016/j.cej.2013.05.005

    Article  CAS  Google Scholar 

  25. Tekerlekopoulou AG, Vasiliadou IA, Vayenas DV (2006) Physico-chemical and biological iron removal from potable water. Biochem Eng J 31:74–83. https://doi.org/10.1016/j.bej.2006.05.020

    Article  CAS  Google Scholar 

  26. Ghosh D, Solanki H, Purkait MK (2008) Removal of Fe(II) from tap water by electrocoagulation technique. J Hazard Mater 155:135–143. https://doi.org/10.1016/j.jhazmat.2007.11.042

    Article  CAS  Google Scholar 

  27. Nandeshwar SN, Mahakalakar AS, Gupta RR, Kyzas GZ (2016) Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River. India J Mol Liq 216:668–692. https://doi.org/10.1016/j.molliq.2015.12.065

    Article  CAS  Google Scholar 

  28. Nemade P, Kadam AM, Shankar HS (2008) Arsenic and iron removal from water using constructed soil filter-a novel approach. Asia-Pacific J Chem Eng 3:497–502. https://doi.org/10.1002/apj.173

    Article  CAS  Google Scholar 

  29. Wang Y, Sikora S, Kim H et al (2013) Effects of solution chemistry on the removal reaction between calcium carbonate-based materials and Fe(II). Sci Total Environ 443:717–724. https://doi.org/10.1016/j.scitotenv.2012.11.009

    Article  CAS  Google Scholar 

  30. Víctor-Ortega MD, Ochando-Pulido JM, Martínez-Ferez A (2016) Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column. J Ind Eng Chem 36:298–305. https://doi.org/10.1016/j.jiec.2016.02.019

    Article  CAS  Google Scholar 

  31. Shavandi MA, Haddadian Z, Ismail MHS et al (2012) Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. J Taiwan Inst Chem Eng 43:750–759. https://doi.org/10.1016/j.jtice.2012.02.014

    Article  CAS  Google Scholar 

  32. Bordoloi S, Nath SK, Gogoi S, Dutta RK (2013) Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: laboratory and field studies. J Hazard Mater 260:618–626. https://doi.org/10.1016/j.jhazmat.2013.06.017

    Article  CAS  Google Scholar 

  33. Vigneswaran S, Visvanathan C (1995) Water treatment processes: Simple options. CRC Press, New York

    Google Scholar 

  34. R.B. Robinson, State-of the-Art: iron and manganese control, In: Proceedings of the New England water works association conference and exhibition. Marlborough, MA, 1998.s

  35. Choo K, Lee H, Choi S (2005) Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. J Membr Sci 267:18–26. https://doi.org/10.1016/j.memsci.2005.05.021

    Article  CAS  Google Scholar 

  36. Korchef A, Kerkeni I, Amor MB et al (2009) Iron removal from aqueous solution by oxidation, precipitation and ultrafiltration. Desalination Water Treat 9:1–8. https://doi.org/10.5004/dwt.2009.745

    Article  CAS  Google Scholar 

  37. Chéry Leal MJ, do Amaral PAP, Nagel-Hassemer ME et al (2015) Aquatic humic substances, iron, and manganese removal by ultrafiltration and nanofiltration membranes combined with coagulation–flocculation–sedimentation. Desalination Water Treat 55:1662–1671. https://doi.org/10.1080/19443994.2015.1012337

    Article  CAS  Google Scholar 

  38. Hwang KJ, Liao CY, Tung KL (2007) Analysis of particle fouling during microfiltration by use of blocking models. J Membr Sci 287(2):287–293. https://doi.org/10.1016/j.memsci.2006.11.004

    Article  CAS  Google Scholar 

  39. Lee EK, Chen V, Fane AG (2008) Natural organic matter (NOM) fouling in low pressure membrane filtration––effect of membranes and operation modes. Desalination 218(1–3):257–270. https://doi.org/10.1016/j.desal.2007.02.021

    Article  CAS  Google Scholar 

  40. Ahmed N, Mir FQ (2021) Chromium (VI) removal using micellar enhanced microfiltration (MEMF) from an aqueous solution: fouling analysis and use of ANN for predicting permeate flux. J Water Process Eng 44:102438. https://doi.org/10.1016/j.jwpe.2021.102438

    Article  Google Scholar 

  41. Ahmed N, Mir FQ (2021) Fabrication of a cost effective ceramic microfiltration membrane by utilizing local Kashmir clay. Trans Indian Ceram Society 80:41–46. https://doi.org/10.1080/0371750X.2020.1864663

    Article  CAS  Google Scholar 

  42. Khemakhem S, Larbot A, ben Amar R (2009) New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment. Ceram Int 35:55–61. https://doi.org/10.1016/j.ceramint.2007.09.117

    Article  CAS  Google Scholar 

  43. Jana S, Purkait MK, Mohanty K (2010) Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions. Appl Clay Sci 47:317–324. https://doi.org/10.1016/j.clay.2009.11.036

    Article  CAS  Google Scholar 

  44. Emani S, Uppaluri R, Purkait MK (2013) Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination 317:32–40. https://doi.org/10.1016/j.desal.2013.02.024

    Article  CAS  Google Scholar 

  45. Vasanth D, Pugazhenthi G, Uppaluri R (2011) Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution. J Membr Sci 379:154–163. https://doi.org/10.1016/j.memsci.2011.05.050

    Article  CAS  Google Scholar 

  46. Varol B, Uzal N (2015) Arsenic removal from aqueous solutions by ultrafiltration assisted with polyacrylamide: an application of response surface methodology. Desalin Water Treat 56:736–743. https://doi.org/10.1080/19443994.2014.937765

    Article  CAS  Google Scholar 

  47. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley

    Google Scholar 

  48. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  49. Chakraborty S, Dasgupta J, Farooq U et al (2014) Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J Membr Sci 456:139–154. https://doi.org/10.1016/j.memsci.2014.01.016

    Article  CAS  Google Scholar 

  50. Suresh K, Pugazhenthi G, Uppaluri R (2016) Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: parametric optimization using response surface methodology. J Water Process Eng 13:27–43. https://doi.org/10.1016/j.jwpe.2016.07.008

    Article  Google Scholar 

  51. Alipanahpour Dil E, Ghaedi M, Ghezelbash GR et al (2017) Highly efficient simultaneous biosorption of Hg 2+, Pb 2+ and Cu 2+ by Live yeast Yarrowia lipolytica 70562 following response surface methodology optimization: Kinetic and isotherm study. J Ind and Eng Chem 48:162–172. https://doi.org/10.1016/j.jiec.2016.12.035

    Article  CAS  Google Scholar 

  52. Belgada A, Charik FZ, Achiou B et al (2021) Optimization of phosphate/kaolinite microfiltration membrane using Box–Behnken design for treatment of industrial wastewater. J Environ Chem Eng 9:104972. https://doi.org/10.1016/j.jece.2020.104972

    Article  CAS  Google Scholar 

  53. Rai P, Pandey A, Pandey A (2019) Optimization of sugar release from banana peel powder waste (BPPW) using Box-Behnken design (BBD): BPPW to biohydrogen conversion. Int J Hydrog s 44:25505–25513. https://doi.org/10.1016/j.ijhydene.2019.07.168

    Article  CAS  Google Scholar 

  54. Uddin MK, Nasar A (2020) Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-64745-3

    Article  CAS  Google Scholar 

  55. Nourbakhsh H, Emam-Djomeh Z, Omid M et al (2014) Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Comput Electron Agric 102:1–9. https://doi.org/10.1016/j.compag.2013.12.017

    Article  Google Scholar 

  56. Idris A, Kormin F, Noordin M (2006) Application of response surface methodology in describing the performance of thin film composite membrane. Sep Purif Technol 49:271–280. https://doi.org/10.1016/j.seppur.2005.10.010

    Article  CAS  Google Scholar 

  57. Xiarchos I, Jaworska A, Zakrzewska-Trznadel G (2008) Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration. J Membr Sci 321:222–231. https://doi.org/10.1016/j.memsci.2008.04.065

    Article  CAS  Google Scholar 

  58. Khayet M, Seman MNA, Hilal N (2010) Response surface modeling and optimization of composite nanofiltration modified membranes. J Membr Sci 349:113–122. https://doi.org/10.1016/j.memsci.2009.11.031

    Article  CAS  Google Scholar 

  59. Gao XK, Low TS, Liu ZJ, Chen SX (2002) Robust design for torque optimization using response surface methodology. IEEE Trans Magn 38:1141–1144. https://doi.org/10.1109/20.996292

    Article  Google Scholar 

  60. Zhao H, Tonkyn RG, Barlow SE et al (2006) Fractional factorial study of HCN removal over a 0.5% Pt/Al2O3 catalyst: effects of temperature, gas flow rate, and reactant partial pressure. Ind Eng Chem Res 45:934–939. https://doi.org/10.1021/ie048777e

    Article  CAS  Google Scholar 

  61. Palamakula A, Nutan MTH, Khan MA (2004) Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form. AAPS PharmSciTech 5:114–121. https://doi.org/10.1208/pt050466

    Article  Google Scholar 

  62. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J Hazard Mater 171:551–562. https://doi.org/10.1016/j.jhazmat.2009.06.035

    Article  CAS  Google Scholar 

  63. Workneh S, Shukla A (2008) Synthesis of sodalite octahydrate zeolite-clay composite membrane and its use in separation of SDS. J Membr Sci 309:189–195. https://doi.org/10.1016/j.memsci.2007.10.033

    Article  CAS  Google Scholar 

  64. Almandoz MC, Marchese J, Prádanos P et al (2004) Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. J Membr Sci 241:95–103. https://doi.org/10.1016/j.memsci.2004.03.045

    Article  CAS  Google Scholar 

  65. APHA (1992) Standard methods for the examination of water and wastewater, 18th ed. Washington, DC.

Download references

Acknowledgements

The authors acknowledge the Central Research Facility (CRF), NIT Srinagar for help with the XRD and FESEM analysis of prepared samples.

Funding

This work was funded by a grant (No. NIT/TEQIP/19/1361) from TEQIP III, NIT Srinagar under the budget head "Research and Development".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fasil Qayoom Mir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Mir, F.Q. Box–Behnken design for optimization of iron removal by hybrid oxidation–microfiltration process using ceramic membrane. J Mater Sci 57, 15224–15238 (2022). https://doi.org/10.1007/s10853-022-07567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07567-0

Navigation