Skip to main content
Log in

Corn cobs and KOH-treated biomasses for indigo carmine removal: kinetics and isotherms

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, indigo carmine (IC) removal with corn cob (NCC) and KOH-treated (MCC) biomasses were studied. The removal efficiency (%R) was maximized by varying adsorbent dosages (D), initial concentrations (C0), and pHs. Therefore, D of 4 and 5 g L−1 at 50 mg L−1 of C0 and pH 2 maximized %R for NCC (70%) and MCC (71%). The KOH-based chemical modification significantly enhanced the pore sizes and the point of zero charge. Moreover, the site’s availability also increased. Chemisorption, including adsorbate-adsorbate interaction, addressed kinetics according to the pseudo-second-order and Elovich models. The Langmuir model fit well with the isotherm data suggesting that the process is thermodynamically favored for NCC. Electrostatic interactions, hydrogen bonds, and π-related interactions mainly conducted the adsorption process. The optimum adsorption capacities showed that NCC (19.87 mg·g−1) was more efficient than MCC (15.59 mg·g−1) and several reported biomass-based adsorbents. These results suggest that corn cob biomass is a promising low-cost adsorbent to bioremediate IC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Erenstein, M. Jaleta, K. Sonder, K. Mottaleb, B.M. Prasanna, Global maize production, consumption and trade: trends and R&D implications. Food Secur 14(5), 1295–1319 (2022). https://doi.org/10.1007/S12571-022-01288-7

    Article  Google Scholar 

  2. E. Santolini, A. Barbaresi, M. Bovo, D. Torreggiani, P. Tassinari, Life cycle assessment of the supply chain processes for the valorisation of corn cob. Transp Res Procedia 67, 93–99 (2022). https://doi.org/10.1016/J.TRPRO.2022.12.039

    Article  Google Scholar 

  3. Z.T. Chong, L.S. Soh, W.F. Yong, Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants: modification, remediation and industry application. Results Eng 17, 100960 (2023). https://doi.org/10.1016/J.RINENG.2023.100960

    Article  CAS  Google Scholar 

  4. G.T. Tee, X.Y. Gok, W.F. Yong, Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review. Environ Res 212, 113248 (2022). https://doi.org/10.1016/J.ENVRES.2022.113248

    Article  CAS  Google Scholar 

  5. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  Google Scholar 

  6. Y. Tang, Y. Zhao, T. Lin, Y. Li, R. Zhou, Y. Peng, Adsorption performance and mechanism of methylene blue by H3PO4 - modified corn stalks. J Environ Chem Eng 7, 103398 (2019). https://doi.org/10.1016/j.jece.2019.103398

    Article  CAS  Google Scholar 

  7. A. Mamaní, N. Ramírez, C. Deiana, M. Giménez, F. Sardella, Highly microporous sorbents from lignocellulosic biomass: different activation routes and their application to dyes adsorption. J Environ Chem Eng 7, 103148 (2019). https://doi.org/10.1016/j.jece.2019.103148

    Article  CAS  Google Scholar 

  8. J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng, Z. Zhang, A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag 227, 395–405 (2018). https://doi.org/10.1016/j.jenvman.2018.08.069

    Article  CAS  Google Scholar 

  9. C. Phaenark, T. Jantrasakul, P. Paejaroen, S. Chunchob, W. Sawangproh, Sugarcane bagasse and corn stalk biomass as a potential sorbent for the removal of Pb(II) and Cd(II) from aqueous solutions. Trends Sci 20, 6221 (2022). https://doi.org/10.48048/tis.2023.6221

    Article  Google Scholar 

  10. M. Afzaal, S. Hameed, N.A. Abbasi, I. Liaqat, R. Rasheed, A.A. Khan, H.A. Manan, Removal of Cr (III) from wastewater by using raw and chemically modified sawdust and corn husk. Water Pract Technol 17, 1937–1958 (2022). https://doi.org/10.2166/WPT.2022.093

    Article  Google Scholar 

  11. R. Tri Windiastuti, T. Santoso, Determination of pptimum pH and contact time from the adsorption process of Cu(II) ions by corn cob (Zea mays) biomass. J Akad Kim 9, 224–229 (2020). https://doi.org/10.22487/J24775185.2020.V9.I4.PP224-229

    Article  Google Scholar 

  12. A. Buasri, N. Chaiyut, K. Tapang, S. Jaroensin, S. Panphrom, Equilibrium and kinetic studies of biosorption of Zn(II) ions from wastewater using modified corn cob. APCBEE Procedia 3, 60–64 (2012). https://doi.org/10.1016/J.APCBEE.2012.06.046

    Article  CAS  Google Scholar 

  13. T. Janani, J.S. Sudarsan, K. Prasanna, Grey water recycling with corn cob as an adsorbent. AIP Conf Proc 2112 (2019). https://doi.org/10.1063/1.5112366

  14. S.N.A.S. Ismail, W.A. Rahman, N.A.A. Rahim, N.D. Masdar, M.L. Kamal, Adsorption of malachite green dye from aqueous solution using corn cob. AIP Conf Proc 2031 (2018). https://doi.org/10.1063/1.5066992

  15. N.L.B. Kouassi, L.D. Blonde, K.M. N’Goran, A. Trokourey, Removal of methylene blue from industrial effluents using corncob activated carbon. Int Res J Pure Appl Chem 33–44 (2022). https://doi.org/10.9734/IRJPAC/2022/V23I5789

  16. C.N. Arenas, A. Vasco, M. Betancur, J. Daniel, Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA). Process Saf Environ Prot 106, 224–238 (2017). https://doi.org/10.1016/j.psep.2017.01.013

    Article  CAS  Google Scholar 

  17. Z. Harrache, M. Abbas, T. Aksil, M. Trari, Thermodynamic and kinetics studies on adsorption of indigo carmine from aqueous solution by activated carbon. Microchem J 144, 180–189 (2019). https://doi.org/10.1016/j.microc.2018.09.004

    Article  CAS  Google Scholar 

  18. H.X. Li, B. Xu, L. Tang, J.H. Zhang, Z.G. Mao, Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. Int Biodeterior Biodegradation 103, 30–37 (2015). https://doi.org/10.1016/j.ibiod.2015.04.007

    Article  CAS  Google Scholar 

  19. N. Khadhri, S.M. El Khames, M. Ben Mosbah, Y. Moussaoui, Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J Environ Chem Eng 7, 102775 (2019). https://doi.org/10.1016/j.jece.2018.11.020

    Article  CAS  Google Scholar 

  20. M.F. Chowdhury, S. Khandaker, F. Sarker, A. Islam, M.T. Rahman, M.R. Awual, Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: a review. J Mol Liq 318, 114061 (2020). https://doi.org/10.1016/J.MOLLIQ.2020.114061

    Article  CAS  Google Scholar 

  21. F.C. Wu, R.L. Tseng, High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. J Hazard Mater 152, 1256–1267 (2008). https://doi.org/10.1016/J.JHAZMAT.2007.07.109

    Article  CAS  Google Scholar 

  22. A.N. Odogu, K. Daouda, B.B.P. Desiré, N.J. Nsami, K.J. Mbadcam, Removal of indigo carmine dye (IC) by batch adsorption method onto dried cola nut shells and its active carbon from aqueous medium. Int J Eng Sci Res Technol 5(3), 874–887 (2016). https://doi.org/10.5281/ZENODO.48382

    Article  CAS  Google Scholar 

  23. J. Zolgharnein, F. Rajabalipour, S. Dermanaki Farahani, Indigo carmine dye adsorptive removal by polyethylene glycol-modified hydroxyapatite nanoparticles as an efficient adsorbent. Water Air Soil Pollut 234, 1–17 (2023). https://doi.org/10.1007/S11270-023-06207-W/METRICS

    Article  Google Scholar 

  24. F.A. Adam, M.G. Ghoniem, M. Diawara, S. Rahali, B.Y. Abdulkhair, M.R. Elamin, M.A. Ben Aissa, M. Seydou, Enhanced adsorptive removal of indigo carmine dye by bismuth oxide doped MgO based adsorbents from aqueous solution: equilibrium, kinetic and computational studies. RSC Adv 12, 24786–24803 (2022). https://doi.org/10.1039/D2RA02636H

    Article  CAS  Google Scholar 

  25. M. El-Kammah, E. Elkhatib, S. Gouveia, C. Cameselle, E. Aboukila, Enhanced removal of indigo carmine dye from textile effluent using green cost-efficient nanomaterial: adsorption, kinetics, thermodynamics and mechanisms. Sustain Chem Pharm 29, 100753 (2022). https://doi.org/10.1016/J.SCP.2022.100753

    Article  CAS  Google Scholar 

  26. L. Hevira, R. Zilfa, J.O. Ighalo, R. Zein, Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell. J Environ Chem Eng 8, 104290 (2020). https://doi.org/10.1016/J.JECE.2020.104290

    Article  CAS  Google Scholar 

  27. S.M. de Oliveira Brito, H.M.C. Andrade, L.F. Soares, R.P. de Azevedo, Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. J Hazard Mater 174, 84–92 (2010). https://doi.org/10.1016/J.JHAZMAT.2009.09.020

    Article  Google Scholar 

  28. U.R. Lakshmi, V.C. Srivastava, I.D. Mall, D.H. Lataye, Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J Environ Manag 90, 710–720 (2009). https://doi.org/10.1016/J.JENVMAN.2008.01.002

    Article  CAS  Google Scholar 

  29. R.M. Ferreira, N.M. de Oliveira, L.L.S. Lima, A.L.D.M. Campista, D.M.A. Stapelfeldt, Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environ Sci Pollut Res 26, 28614–28621 (2019). https://doi.org/10.1007/S11356-018-3752-X/METRICS

    Article  CAS  Google Scholar 

  30. Minagricultura M de A y DR, Plan integral de desarrollo agropecuario y rural con enfoque territorial (Tomo II. Departamento del Atlántico, Bogotá, 2019)

    Google Scholar 

  31. S.J. Salih, A.S. Abdul Kareem, S.S. Anwer, Adsorption of anionic dyes from textile wastewater utilizing raw corncob. Heliyon 8, e10092 (2022). https://doi.org/10.1016/j.heliyon.2022.e10092

    Article  CAS  Google Scholar 

  32. N. Cordeiro, C. Gouveia, M.J. John, Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Ind Crop Prod 33, 108–115 (2011). https://doi.org/10.1016/J.INDCROP.2010.09.008

    Article  CAS  Google Scholar 

  33. X. Han, D. Xie, H. Song, J. Ma, Y. Zhou, J. Chen, Y. Yang, F. Huang, Estimation of chemical oxygen demand in different water systems by near-infrared spectroscopy. Ecotoxicol Environ Saf 243, 113964 (2022). https://doi.org/10.1016/j.ecoenv.2022.113964

    Article  CAS  Google Scholar 

  34. M. Kosmulski, The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interf Sci 296, 102519 (2021). https://doi.org/10.1016/J.CIS.2021.102519

    Article  CAS  Google Scholar 

  35. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120, 88–116 (2017). https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  Google Scholar 

  36. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109, 495–504 (2016). https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  37. M.P. Astuti, T. Jasemizad, L.P. Padhye, Surface modification of coconut shell activated carbon for efficient solid-phase extraction of N-nitrosodimethylamine from water. J Sep Sci 44, 618–627 (2021). https://doi.org/10.1002/JSSC.202000868

    Article  CAS  Google Scholar 

  38. S.D. Ashrafi, H. Kamani, A.H. Mahvi, P. Taylor, Desalination and water treatment. The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin Water Treat, 37–41 (2014). https://doi.org/10.1080/19443994.2014.979329

  39. Y. Zou, J. Fu, Z. Chen, L. Ren, The effect of microstructure on mechanical properties of corn cob. Micron 146, 103070 (2021). https://doi.org/10.1016/j.micron.2021.103070

    Article  CAS  Google Scholar 

  40. R. Javier-Astete, J. Jimenez-Davalos, G. Zolla, Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS One 16, e0256559 (2021). https://doi.org/10.1371/JOURNAL.PONE.0256559

    Article  CAS  Google Scholar 

  41. J.O. Nwadiogbu, P.A.C. Okoye, V.I. Ajiwe, N.J.N. Nnaji, Hydrophobic treatment of corn cob by acetylation: kinetics and thermodynamics studies. J Environ Chem Eng 2, 1699–1704 (2014). https://doi.org/10.1016/j.jece.2014.06.003

    Article  CAS  Google Scholar 

  42. X. Chi, C. Liu, Y.H. Bi, G. Yu, Y. Zhang, Z. Wang, B. Li, Q. Cui, A clean and effective potassium hydroxide pretreatment of corncob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Adv 9, 11558–11566 (2019). https://doi.org/10.1039/C9RA01555H

    Article  CAS  Google Scholar 

  43. L. Dai, W. Zhu, J. Lu, F. Kong, C. Si, Y. Ni, A lignin-containing cellulose hydrogel for lignin fractionation. Green Chem 21, 5222–5230 (2019). https://doi.org/10.1039/C9GC01975H

    Article  CAS  Google Scholar 

  44. W.R. Kunusa, I. Isa, L.A. Laliyo, H. Iyabu, FTIR, XRD and SEM analysis of microcrystalline cellulose (MCC) fibers from corncorbs in alkaline treatment. J Phys Conf Ser 1028, 012199 (2018). https://doi.org/10.1088/1742-6596/1028/1/012199

    Article  CAS  Google Scholar 

  45. P. Bock, N. Gierlinger, Infrared and Raman spectra of lignin substructures: coniferyl alcohol, abietin, and coniferyl aldehyde. J Raman Spectrosc 50, 778–792 (2019). https://doi.org/10.1002/jrs.5588

    Article  CAS  Google Scholar 

  46. T. Hong, J.Y. Yin, S.P. Nie, M.Y. Xie, Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chemistry X 12, 100168 (2021). https://doi.org/10.1016/J.FOCHX.2021.100168

    Article  CAS  Google Scholar 

  47. D. Varga, L. Tolvaj, Z. Molnar, Z. Pasztory, Leaching effect of water on photodegraded hardwood species monitored by IR spectroscopy. Wood Sci Technol 54, 1407–1421 (2020). https://doi.org/10.1007/s00226-020-01204-2

    Article  CAS  Google Scholar 

  48. M. Güler, S. Çetintaş, D. Bingöl, Cinnamon bark as low-cost and eco-friendly adsorbent for the removal of indigo carmine and malachite green dyestuffs. Int J Environ Anal Chem 101, 735–757 (2021). https://doi.org/10.1080/03067319.2019.1670171

    Article  CAS  Google Scholar 

  49. R.E. Palma-Goyes, J. Silva-Agredo, I. González, R.A. Torres-Palma, Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochim Acta 140, 427–433 (2014). https://doi.org/10.1016/J.ELECTACTA.2014.06.096

    Article  CAS  Google Scholar 

  50. Z. Begum, K.S. Kavi Kumar, in A Study of India’s Textile Exports and Environmental Regulations. Global environmental requirements - textile industry (2017), pp. 61–72. https://doi.org/10.1007/978-981-10-6295-7_4

    Chapter  Google Scholar 

  51. M.R. Elamin, B.Y. Abdulkhair, A.O. Elzupir, Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: solution parameters and recyclability. Ain Shams Eng J 14, 101844 (2023). https://doi.org/10.1016/J.ASEJ.2022.101844

    Article  Google Scholar 

  52. X. Yang, G. Xu, H. Yu, Z. Zhang, Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresour Technol 211, 566–573 (2016). https://doi.org/10.1016/j.biortech.2016.03.140

    Article  CAS  Google Scholar 

  53. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, S. Lairini, Recent advances in adsorption kinetic models: their application to dye types. Arab J Chem 14, 103031 (2021). https://doi.org/10.1016/j.arabjc.2021.103031

    Article  CAS  Google Scholar 

  54. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 127279 (2020). https://doi.org/10.1016/j.chemosphere.2020.127279

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor Cubillán.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverría-Pérez, J., Carvajal-Palacio, W., Gómez-Plata, L. et al. Corn cobs and KOH-treated biomasses for indigo carmine removal: kinetics and isotherms. emergent mater. 6, 1217–1229 (2023). https://doi.org/10.1007/s42247-023-00526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00526-8

Keywords

Navigation