Skip to main content
Log in

Hydrogen gas separation through membrane technology and sustainability analysis of membrane: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In today’s world, every country is striving towards progress, but this progress negatively impacts our environment. Due to human activities like energy generation and transmission, harmful greenhouse gases like CO2, H2S, and NO2 are released, leading to a severe environmental issue. To combat this problem, membrane-based gas separation techniques are used in various industries like water treatment, biogas recovery, and hydrogen recovery. This article aims to provide comprehensive information about membrane technology, including its stages of development, material selection, fabrication methods, performance evaluation, applications, and sustainability. It is an essential resource for researchers who want to enhance the efficiency of membrane technology or develop new types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.E. Hosseini, M.A. Wahid, N. Aghili, The scenario of greenhouse gases reduction in Malaysia. Renew. Sustain. Energy Rev. 28, 400–409 (2013). https://doi.org/10.1016/j.rser.2013.08.045

    Article  Google Scholar 

  2. F. Ceci, A. Razzaq, Inclusivity of information and communication technology in ecological governance for sustainable resources management in G10 countries. Resour Policy 81, 103378 (2023). https://doi.org/10.1016/j.resourpol.2023.103378

    Article  Google Scholar 

  3. I. Boese-Cortés, F.A. Díaz-Alvarado, A.L. Prieto, Biocatalytic membrane reactor modeling for fermentative hydrogen production from wastewater: a review. Int. J. Hydrogen Energy 48, 13024–13043 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.188

    Article  CAS  Google Scholar 

  4. O. Sarkar, J.A. Modestra, U. Rova et al., Waste-derived renewable hydrogen and methane: towards a potential energy transition solution. Fermentation 9, 368 (2023). https://doi.org/10.3390/fermentation9040368

    Article  CAS  Google Scholar 

  5. Soni K, Kalbande S (2023) Influence of energy sources and shade drying period on oil yield and chemical composition of the essential oil extracted from Palmarosa grass (Cymbopogon martinii) through hydro distillation method. Bioresour Technol Reports 22:. https://doi.org/10.1016/j.biteb.2023.101491

  6. Lider A, Kudiiarov V, Kurdyumov N, et al (2023) Materials and techniques for hydrogen separation from methane-containing gas mixtures. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.345

  7. Jain R, Panwar NL, Jain SK, et al (2022) Bio-hydrogen production through dark fermentation: an overview. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03282-7

  8. S.Z. Baykara, Hydrogen: a brief overview on its sources, production and environmental impact. Int. J. Hydrogen Energy 43, 10605–10614 (2018)

    Article  CAS  Google Scholar 

  9. Lanjekar PR, Panwar NL, Agrawal C (2023) A comprehensive review on hydrogen production through thermochemical conversion of biomass for energy security. Bioresour Technol Reports 21. https://doi.org/10.1016/j.biteb.2022.101293

  10. P. Li, H.Z. Chen, T.S. Chung, The effects of substrate characteristics and pre-wetting agents on PAN-PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation. J Memb Sci 434, 18–25 (2013). https://doi.org/10.1016/j.memsci.2013.01.042

    Article  CAS  Google Scholar 

  11. Pandey, P. and Chauhan, R. (2001) Membranes for Gas Separation. Progress in Polymer Science, 26, 853–893. https://doi.org/10.1016/S0079-6700(01)00009-0

  12. M.T. Gaudio, G. Coppola, L. Zangari et al., Artificial intelligence-based optimization of industrial membrane processes. Earth Syst Environ 5, 385–398 (2021). https://doi.org/10.1007/s41748-021-00220-x

    Article  Google Scholar 

  13. N. Pal, M. Agarwal, K. Maheshwari, Y.S. Solanki, A review on types, fabrication and support material of hydrogen separation membrane. Mater Today Proc 28, 1386–1391 (2020). https://doi.org/10.1016/j.matpr.2020.04.806

    Article  CAS  Google Scholar 

  14. Weber M, Drobek M, Rebière B, et al (2020) Hydrogen selective palladium-alumina composite membranes prepared by atomic layer deposition. J Memb Sci 596. https://doi.org/10.1016/j.memsci.2019.117701

  15. M. Olaru, I. Bordianu, B.C. Simionescu, Polymers in membrane science. https://www.researchgate.net/profile/Gheorghe_Nechifor/publication/314257931_9_BCS-PPI/data/58be3c5ba6fdcc2d14eb58c3/9-BCS-PPI.pdf. Accessed 26 Jan 2023

  16. Perry R H, DW G (2007). Perry’s chemical engineers’ handbook, 8th illustrated ed. New York: McGraw-Hill.

  17. Gandía LM, Arzamendi G, Diéguez PM (2013) Renewable hydrogen technologies: production, purification, storage, applications and safety. Renew Hydrog Technol Prod Purification, Storage, Appl Saf 1–460. https://doi.org/10.1016/C2011-0-05152-9

  18. Vatanpour V, Pasaoglu ME, Barzegar H, et al (2022) Cellulose acetate in fabrication of polymeric membranes: a review. Chemosphere 295. https://doi.org/10.1016/j.chemosphere.2022.133914

  19. R. Sidhikku Kandath Valappil, N. Ghasem, M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J. Ind. Eng. Chem. 98, 103–129 (2021). https://doi.org/10.1016/j.jiec.2021.03.030

    Article  CAS  Google Scholar 

  20. LOEB S, SOURIRAJAN S (1963) Sea water demineralization by means of an osmotic membrane. 117–132. https://doi.org/10.1021/ba-1963-0038.ch009

  21. R.W. Baker, B.T. Low, Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014). https://doi.org/10.1021/ma501488s

    Article  CAS  Google Scholar 

  22. Baker RW (2002). Future directions of membrane gas separation technology. Industrial & engineering chemistry research, 41(6), 1393–1411.

  23. Baker RW (2006). Membranes for vapor/gas separation. Membrane Technology and Research, Inc.: Menlo Park, CA, USA.

  24. S. Sridhar, S. Bee, S. Bhargava, Membrane-based gas separation: principle, applications and future potential. Chem Eng Dig 1, 1–25 (2014)

    CAS  Google Scholar 

  25. Scott K (1995) Membrane Materials, Preparation and Characterisation. Handb Ind Membr 187–269. https://doi.org/10.1016/b978-185617233-2/50005-2

  26. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review. J Memb Sci 107, 1–21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I

    Article  CAS  Google Scholar 

  27. Castro-Muñoz R (2022) Membranes—future for sustainable gas and liquid separation? Curr Res Green Sustain Chem 5. https://doi.org/10.1016/j.crgsc.2022.100326

  28. K.S. Rothenberger, B.H. Howard, R.P. Killmeyer et al., Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. J Memb Sci 218, 19–37 (2003). https://doi.org/10.1016/S0376-7388(03)00134-0

    Article  CAS  Google Scholar 

  29. Pacheco Tanaka DA, Medrano JA, Viviente Sole JL, Gallucci F (2020) Metallic membranes for hydrogen separation. Curr Trends Futur Dev Membr Recent Adv Met Membr 1–29. https://doi.org/10.1016/B978-0-12-818332-8.00001-6

  30. A.T. Besha, M.T. Tsehaye, G.A. Tiruye et al., Deployable membrane-based energy technologies: the Ethiopian prospect. Sustain 12, 1–34 (2020). https://doi.org/10.3390/su12218792

    Article  CAS  Google Scholar 

  31. S.P. Cardoso, I.S. Azenha, Z. Lin et al., Inorganic membranes for hydrogen separation. Sep. Purif. Rev. 47, 229–266 (2018). https://doi.org/10.1080/15422119.2017.1383917

    Article  CAS  Google Scholar 

  32. A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz, Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol. 70, 12–26 (2009). https://doi.org/10.1016/j.seppur.2009.09.002

    Article  CAS  Google Scholar 

  33. D.V. Strugova, M.Y. Zadorozhnyy, E.A. Berdonosova et al., Novel process for preparation of metal-polymer composite membranes for hydrogen separation. Int. J. Hydrogen Energy 43, 12146–12152 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.183

    Article  CAS  Google Scholar 

  34. K. Asif, S.S.M. Lock, S.A.A. Taqvi et al., A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation. Chemosphere 311, 136936 (2023). https://doi.org/10.1016/j.chemosphere.2022.136936

    Article  CAS  Google Scholar 

  35. S. Yun, S. Ted Oyama, Correlations in palladium membranes for hydrogen separation: a review. J Memb Sci 375, 28–45 (2011). https://doi.org/10.1016/j.memsci.2011.03.057

    Article  CAS  Google Scholar 

  36. A.O. Malakhov, A.V. Volkov, Modification of polymer membranes for use in organic solvents. Russ. J. Appl. Chem. 93, 14–24 (2020). https://doi.org/10.1134/S1070427220010024

    Article  CAS  Google Scholar 

  37. E.J. Kappert, M.J.T. Raaijmakers, K. Tempelman et al., Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: a comprehensive dataset. J Memb Sci 569, 177–199 (2019). https://doi.org/10.1016/j.memsci.2018.09.059

    Article  CAS  Google Scholar 

  38. Yampolskii Y (2012). Polymeric gas separation membranes. Macromolecules, 45(8), 3298–3311

  39. J.H. Bitter, A. Asadi Tashvigh, Recent advances in polybenzimidazole membranes for hydrogen purification. Ind. Eng. Chem. Res. 61, 6125–6134 (2022). https://doi.org/10.1021/acs.iecr.2c00645

    Article  CAS  Google Scholar 

  40. K.B. Bischoff, Fundamentals of Chemical Reaction Engineering (Brotz, Walter) (McGraw-Hill Higher Education, New York, NY, 1966)

    Book  Google Scholar 

  41. P.S. Goh, A.F. Ismail, S.M. Sanip et al., Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 81, 243–264 (2011). https://doi.org/10.1016/j.seppur.2011.07.042

    Article  CAS  Google Scholar 

  42. Duarte AP, Bordado JC (2016) Smart composite reverse-osmosis membranes for energy generation and water desalination processes. Smart Compos Coatings Membr Transp Struct Environ Energy Appl 329–350. https://doi.org/10.1016/B978-1-78242-283-9.00012-9

  43. Montemor MF (Ed.). (2015). Smart composite coatings and membranes: Transport, structural, environmental and energy applications. Elsevier.

  44. V.K. Thakur, S.I. Voicu, Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr. Polym. 146, 148–165 (2016). https://doi.org/10.1016/j.carbpol.2016.03.030

    Article  CAS  Google Scholar 

  45. A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2, 17–42 (2016). https://doi.org/10.1039/c5ew00159e

    Article  CAS  Google Scholar 

  46. V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 206, 116–140 (2014). https://doi.org/10.1016/j.cis.2013.05.005

    Article  CAS  Google Scholar 

  47. C.S. Ong, P.S. Goh, W.J. Lau et al., Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393, 2–15 (2016). https://doi.org/10.1016/j.desal.2016.01.007

    Article  CAS  Google Scholar 

  48. F. Ahmed, B.S. Lalia, V. Kochkodan et al., Electrically conductive polymeric membranes for fouling prevention and detection: a review. Desalination 391, 1–15 (2016). https://doi.org/10.1016/j.desal.2016.01.030

    Article  CAS  Google Scholar 

  49. H.G. Shiraz, M.G. Shiraz, Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. Int. J. Hydrogen Energy 42, 11528–11533 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.129

    Article  CAS  Google Scholar 

  50. N. Pal, M. Agarwal, Advances in materials process and separation mechanism of the membrane towards hydrogen separation. Int. J. Hydrogen Energy 46, 27062–27087 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.175

    Article  CAS  Google Scholar 

  51. Sazali N, Salleh WNW, Ismail AF, et al (2019) Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment. Int J Hydrogen Energy 20924–20932. https://doi.org/10.1016/j.ijhydene.2018.06.039

  52. T.S. Chung, L. Shao, P.S. Tin, Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol. Rapid Commun. 27, 998–1003 (2006). https://doi.org/10.1002/marc.200600147

    Article  CAS  Google Scholar 

  53. C.M. Aberg, A.E. Ozcam, J.M. Majikes et al., Extended chemical crosslinking of a thermoplastic polyimide: macroscopic and microscopic property development. Macromol. Rapid Commun. 29, 1461–1466 (2008). https://doi.org/10.1002/marc.200800230

    Article  CAS  Google Scholar 

  54. Huang X, Yao H, Cheng Z (2017) Hydrogen separation membranes of polymeric materials. Nanostructured Mater Next-Generation Energy Storage Convers Hydrog Prod Storage, Util 85–116. https://doi.org/10.1007/978-3-662-53514-1_3

  55. J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations. MRS Bull. 31, 745–749 (2006). https://doi.org/10.1557/mrs2006.187

    Article  CAS  Google Scholar 

  56. Yin H, Yip ACK (2017) A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts 7. https://doi.org/10.3390/catal7100297

  57. Scholes CA, Ghosh UK (2017) Review of membranes for helium separation and purification. Membranes (Basel) 7. https://doi.org/10.3390/membranes7010009

  58. M.Z. Ahmad, R. Castro-Munõz, P.M. Budd, Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 12, 23333–23370 (2020). https://doi.org/10.1039/d0nr07042d

    Article  CAS  Google Scholar 

  59. R. Castro-Muñoz, V. Fíla, C.T. Dung, Mixed matrix membranes based on PIMs for gas permeation: principles, synthesis, and current status. Chem. Eng. Commun. 204, 295–309 (2017). https://doi.org/10.1080/00986445.2016.1273832

    Article  CAS  Google Scholar 

  60. Yi S, Ghanem B, Liu Y, et al (2019) Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Sci Adv 5. https://doi.org/10.1126/sciadv.aaw5459

  61. A. Bos, I. Pünt, H.W.M. Strathmann, Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE J. 47, 1088–1093 (2001)

    Article  CAS  Google Scholar 

  62. Y.K. Vijay, S. Wate, N.K. Acharya, J.C. Garg, The titanium-coated polymeric membranes for hydrogen recovery. Int. J. Hydrogen Energy 27, 905–908 (2002). https://doi.org/10.1016/S0360-3199(01)00188-4

    Article  CAS  Google Scholar 

  63. Bernardo P (2016). Petrochemical Industry and Membrane Operations. In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44324-8_1624

  64. A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah et al., Review of technologies for oil and gas produced water treatment. J Hazard Mater 170, 530–551 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044

    Article  CAS  Google Scholar 

  65. M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review. Desalination 235, 199–244 (2009). https://doi.org/10.1016/j.desal.2007.10.042

    Article  CAS  Google Scholar 

  66. Baker, R.W. Membrane Technology and Applications; Wiley Online Library: Hoboken, NJ, USA, 2012

  67. De Meis D (2017). Overview on porous inorganic membranes for gas separation. https://iris.enea.it/bitstream/20.500.12079/6773/1/RT-2017-05-ENEA.pdf. Accessed 21 March 2023

  68. J. Antonio, C. Martín, C. Algieri et al., Catalytic membrane reactors: the industrial applications perspective. Catalysts 2021, 691 (2021)

    Google Scholar 

  69. Kamble AR, Patel CM, Murthy ZVP (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Renew Sustain Energy Rev 145. https://doi.org/10.1016/j.rser.2021.111062

  70. Y. Gu, P. Hacarlioglu, S.T. Oyama, Hydrothermally stable silica-alumina composite membranes for hydrogen separation. J Memb Sci 310, 28–37 (2008). https://doi.org/10.1016/j.memsci.2007.10.025

    Article  CAS  Google Scholar 

  71. J. Caro, M. Noack, Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater. 115, 215–233 (2008). https://doi.org/10.1016/j.micromeso.2008.03.008

    Article  CAS  Google Scholar 

  72. H. Wang, X. Dong, Y.S. Lin, Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J Memb Sci 450, 425–432 (2014). https://doi.org/10.1016/j.memsci.2013.08.030

    Article  CAS  Google Scholar 

  73. J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes. J Memb Sci 228, 227–236 (2004). https://doi.org/10.1016/j.memsci.2003.10.011

    Article  CAS  Google Scholar 

  74. S. Shishatskiy, C. Nistor, M. Popa et al., Polyimide asymmetric membranes for hydrogen separation: influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006). https://doi.org/10.1002/adem.200600024

    Article  CAS  Google Scholar 

  75. A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation. J Memb Sci 193, 1–18 (2001). https://doi.org/10.1016/S0376-7388(01)00510-5

    Article  CAS  Google Scholar 

  76. S.K. Gade, P.M. Thoen, J.D. Way, Unsupported palladium alloy foil membranes fabricated by electroless plating. J Memb Sci 316, 112–118 (2008). https://doi.org/10.1016/j.memsci.2007.08.022

    Article  CAS  Google Scholar 

  77. A. Sharma, S. Kumar, B. Tripathi et al., Aligned CNT/polymer nanocomposite membranes for hydrogen separation. Int. J. Hydrogen Energy 34, 3977–3982 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.068

    Article  CAS  Google Scholar 

  78. Chuah CY, Jiang X, Goh K, Wang R (2021) Recent progress in mixed-matrix membranes for hydrogen separation. Membranes (Basel) 11. https://doi.org/10.3390/membranes11090666

  79. E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45, 274–282 (2011). https://doi.org/10.1016/j.watres.2010.07.060

    Article  CAS  Google Scholar 

  80. W. Mei, Y. Du, T. Wu et al., High-flux CHA zeolite membranes for H2 separations. J Memb Sci 565, 358–369 (2018). https://doi.org/10.1016/j.memsci.2018.08.025

    Article  CAS  Google Scholar 

  81. B.J. Bucior, D.L. Chen, J. Liu, J.K. Johnson, Porous carbon nanotube membranes for separation of H2/CH 4 and CO2/CH4 mixtures. J. Phys. Chem. C 116, 25904–25910 (2012). https://doi.org/10.1021/jp3098022

    Article  CAS  Google Scholar 

  82. R. Wang, J. Qian, X. Chen et al., Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nat. Commun. 14, 2161 (2023). https://doi.org/10.1038/s41467-023-37932-9

    Article  CAS  Google Scholar 

  83. A. Mohamed, S. Yousef, V. Makarevicius, A. Tonkonogovas, GNs/MOF-based mixed matrix membranes for gas separations. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.02.074

    Article  Google Scholar 

  84. G.L. Zhuang, H.H. Tseng, M.Y. Wey, Preparation of PPO-silica mixed matrix membranes by in-situ sol-gel method for H2/CO2 separation. Int. J. Hydrogen Energy 39, 17178–17190 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.050

    Article  CAS  Google Scholar 

  85. Setiawan WK, Chiang KY (2019) Silica applied as mixed matrix membrane inorganic filler for gas separation: A review. Sustain Environ Res 1:. https://doi.org/10.1186/s42834-019-0028-1

  86. D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J. Ind. Eng. Chem. 19, 375–393 (2013). https://doi.org/10.1016/j.jiec.2012.09.019

    Article  CAS  Google Scholar 

  87. Klaysom C, Shahid S. (2019) Zeolite-based mixed matrix membranes for hazardous gas removal. in Advanced Nanomaterials for Membrane Synthesis and its Applications, 1st Edn, eds W. Lau, F. Ismail, and A. Ahmed (Oxford: Elsevier B.V.), 127–157. https://doi.org/10.1016/B978-0-12-814503-6.00006-9

  88. Skoulidas AI, Sholl DS, Johnson JK (2006) Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J Chem Phys 124:. https://doi.org/10.1063/1.2151173

  89. M. Nour, K. Berean, S. Balendhran et al., CNT/PDMS composite membranes for H2 and CH4 gas separation. Int. J. Hydrogen Energy 38, 10494–10501 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.162

    Article  CAS  Google Scholar 

  90. Tang Y, Lin Y, Ford DM, et al (2021) A review on models and simulations of membrane formation via phase inversion processes. J Memb Sci 640:. https://doi.org/10.1016/j.memsci.2021.119810

  91. G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011). https://doi.org/10.1021/ie101928r

    Article  CAS  Google Scholar 

  92. A. Venault, Y. Chang, D.-M. Wang, D. Bouyer, A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process. Polym. Rev. 53, 568–626 (2013). https://doi.org/10.1080/15583724.2013.828750

    Article  CAS  Google Scholar 

  93. J.F. Kim, J.H. Kim, Y.M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J. 62, 461–490 (2016). https://doi.org/10.1002/aic.15076

    Article  CAS  Google Scholar 

  94. B. Wang, Z. Lai, Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions. J Memb Sci 405–406, 275–283 (2012). https://doi.org/10.1016/j.memsci.2012.03.020

    Article  CAS  Google Scholar 

  95. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011). https://doi.org/10.1039/c0ee00541j

    Article  CAS  Google Scholar 

  96. Liu F., Hashim NA., Liu Y., Abed, M. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of membrane science, 375(1-2), 1-27.

  97. Y. Lin, Y. Tang, H. Ma et al., Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation. J. Appl. Polym. Sci. 114, 1523–1528 (2009). https://doi.org/10.1002/app.30622

    Article  CAS  Google Scholar 

  98. A. Arabi Shamsabadi, A. Kargari, M. Bahrami Babaheidari, Preparation, characterization and gas permeation properties of PDMS/PEI composite asymmetric membrane for effective separation of hydrogen from H 2/CH4 mixed gas. Int. J. Hydrogen Energy 39, 1410–1419 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.004

    Article  CAS  Google Scholar 

  99. Q. Li, Z.L. Xu, L.Y. Yu, Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes. J. Appl. Polym. Sci. 115, 2277–2287 (2010). https://doi.org/10.1002/app.31324

    Article  CAS  Google Scholar 

  100. G.R. Guillen, G.Z. Ramon, H.P. Kavehpour et al., Direct microscopic observation of membrane formation by nonsolvent induced phase separation. J Memb Sci 431, 212–220 (2013). https://doi.org/10.1016/j.memsci.2012.12.031

    Article  CAS  Google Scholar 

  101. P.D. Graham, A.J. McHugh, Kinetics of thermally induced phase separation in a crystallizable polymer solution. Macromolecules 31, 2565–2568 (1998). https://doi.org/10.1021/ma971056p

    Article  CAS  Google Scholar 

  102. X. Li, C. Chen, J. Li, Formation kinetics of polyethersulfone with cardo membrane via phase inversion. J Memb Sci 314, 206–211 (2008). https://doi.org/10.1016/j.memsci.2008.01.042

    Article  CAS  Google Scholar 

  103. J.M.S. Henis, M.K. Tripodi, Composite hollow fiber membranes for gas separation: the resistance model approach. Polym Sci Technol 16, 75–78 (1982). https://doi.org/10.1007/978-1-4613-3371-5_6

    Article  CAS  Google Scholar 

  104. J.M.S. Henis, M.K. Tripodi, The developing technology of gas separating membranes. Science 220, 11–17 (1983). https://doi.org/10.1126/science.220.4592.11

    Article  CAS  Google Scholar 

  105. P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J Polym Sci Part A Polym Chem 34, 531–559 (1996). https://doi.org/10.1002/pola.1996.816

    Article  CAS  Google Scholar 

  106. Morgan PW (1965) Condensation polymers: by interfacial and solution methods. https://doi.org/10.1002/ange.19660781632

  107. Cadotte , J. E. , Steuck , M. H. and Petersen , R. J. (1978) Research on In Situ-Formed Condensation Polymers from Reverse Osmosis Membranes . In ibid., Report No. PB-288387

  108. J.E. Cadotte, R.J. Petersen, R.E. Larson, E.E. Erickson, A new thin-film composite seawater reverse osmosis membrane. Desalination 32, 25–31 (1980). https://doi.org/10.1016/S0011-9164(00)86003-8

    Article  Google Scholar 

  109. M.B.M.Y. Ang, J.A.D. Marquez, S.H. Huang, K.R. Lee, A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J. Ind. Eng. Chem. 97, 129–141 (2021). https://doi.org/10.1016/j.jiec.2021.03.013

    Article  CAS  Google Scholar 

  110. S.H. Huang, W.S. Hung, D.J. Liaw et al., Positron annihilation study on thin-film composite pervaporation membranes: correlation between polyamide fine structure and different interfacial polymerization conditions. Polymer 51, 1370–1376 (2010). https://doi.org/10.1016/j.polymer.2010.01.064

    Article  CAS  Google Scholar 

  111. M. Shan, X. Liu, X. Wang et al., Novel high performance poly(: P-phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H2 separation. J Mater Chem A 7, 8929–8937 (2019). https://doi.org/10.1039/c9ta01524h

    Article  CAS  Google Scholar 

  112. H. Liu, Q. Huang, Q. Wang et al., Preparation of high stability graphene oxide/zinc oxide composite membrane via vacuum filtration for separation of methylene blue from aqueous solution. ChemistrySelect 5, 10887–10896 (2020). https://doi.org/10.1002/slct.202002725

    Article  CAS  Google Scholar 

  113. K. Shanmugam, S. Varanasi, G. Garnier, W. Batchelor, Rapid preparation of smooth nanocellulose films using spray coating. Cellulose 24, 2669–2676 (2017). https://doi.org/10.1007/s10570-017-1328-4

    Article  CAS  Google Scholar 

  114. Liu Q, Zhang Y, Liu Y, et al (2021) Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. J Alloys Compd 860:. https://doi.org/10.1016/j.jallcom.2020.158151

  115. M. Ostwal, D.B. Shinde, X. Wang et al., Graphene oxide—molybdenum disulfide hybrid membranes for hydrogen separation. J Memb Sci 550, 145–154 (2018). https://doi.org/10.1016/j.memsci.2017.12.063

    Article  CAS  Google Scholar 

  116. R. Ashraf, H.S. Sofi, A. Malik et al., Recent trends in the fabrication of starch nanofibers: electrospinning and non-electrospinning routes and their applications in biotechnology. Appl. Biochem. Biotechnol. 187, 47–74 (2019). https://doi.org/10.1007/s12010-018-2797-0

    Article  CAS  Google Scholar 

  117. Alayande AB, Kang Y, Jang J, et al (2021) Antiviral nanomaterials for designing mixed matrix membranes. Membranes (Basel) 11:. https://doi.org/10.3390/membranes11070458

  118. R.K. Mishra, P. Mishra, K. Verma et al., Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 17, 767–800 (2019). https://doi.org/10.1007/s10311-018-00838-w

    Article  CAS  Google Scholar 

  119. L. Yao, T.W. Haas, A. Guiseppi-Elie et al., Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chem. Mater. 15, 1860–1864 (2003). https://doi.org/10.1021/cm0210795

    Article  CAS  Google Scholar 

  120. Riccio BVF, Silvestre ALP, Meneguin AB, et al (2022) Exploiting polymeric films as a multipurpose drug delivery system: a review. AAPS PharmSciTech 23:. https://doi.org/10.1208/s12249-022-02414-6

  121. Jiang S, Meng X, Chen B, et al (2020) Electrospinning superhydrophobic–superoleophilic PVDF-SiO2 nanofibers membrane for oil–water separation. J Appl Polym Sci 137:. https://doi.org/10.1002/app.49546

  122. F.R. Omi, M.R. Choudhury, N. Anwar et al., Highly conductive ultrafiltration membrane via vacuum filtration assisted layer-by-layer deposition of functionalized carbon nanotubes. Ind. Eng. Chem. Res. 56, 8474–8484 (2017). https://doi.org/10.1021/acs.iecr.7b00847

    Article  CAS  Google Scholar 

  123. D.F. Sanders, Z.P. Smith, R. Guo et al., Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013). https://doi.org/10.1016/j.polymer.2013.05.075

    Article  CAS  Google Scholar 

  124. H. Suda, H. Yamauchi, Y. Uchimaru et al., Preparation and gas permeation properties of silicon carbide-based inorganic membranes for hydrogen separation. Desalination 193, 252–255 (2006). https://doi.org/10.1016/j.desal.2005.04.143

    Article  CAS  Google Scholar 

  125. Chen H, Li C, Liu L, et al (2022) ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures. J Memb Sci 653:. https://doi.org/10.1016/j.memsci.2022.120550

  126. Liu L, Liu D, Zhang C (2022) High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. J Memb Sci 642:. https://doi.org/10.1016/j.memsci.2021.119978

  127. F. Larachi, L. Belfares, I. Iliuta, B.P.A. Grandjean, Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42, 222–242 (2003). https://doi.org/10.1021/ie020416g

    Article  CAS  Google Scholar 

  128. X. Ma, X. Wu, J. Caro, A. Huang, Polymer composite membrane with penetrating ZIF-7 sheets displays high hydrogen permselectivity. Angew Chemie - Int Ed 58, 16156–16160 (2019). https://doi.org/10.1002/anie.201911226

    Article  CAS  Google Scholar 

  129. Etxeberria-Benavides M, Johnson T, Cao S, et al (2020) PBI mixed matrix hollow fiber membrane: influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure. Sep Purif Technol 237:. https://doi.org/10.1016/j.seppur.2019.116347

  130. T.H. Weng, H.H. Tseng, M.Y. Wey, Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. Int. J. Hydrogen Energy 35, 6971–6983 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.024

    Article  CAS  Google Scholar 

  131. R. Kumar, K.M. Kamakshi, K. Awasthi, Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation. Int. J. Hydrogen Energy 41, 23057–23066 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.008

    Article  CAS  Google Scholar 

  132. M. Wang, Z. Wang, S. Zhao et al., Recent advances on mixed matrix membranes for CO2 separation. Chinese J Chem Eng 25, 1581–1597 (2017). https://doi.org/10.1016/j.cjche.2017.07.006

    Article  Google Scholar 

  133. J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Memb Sci 314, 123–133 (2008). https://doi.org/10.1016/j.memsci.2008.01.031

    Article  CAS  Google Scholar 

  134. K. Malek, M.O. Coppens, Knudsen self- and Fickian diffusion in rough nanoporous media. J. Chem. Phys. 119, 2801–2811 (2003). https://doi.org/10.1063/1.1584652

    Article  CAS  Google Scholar 

  135. M.N. Kajama, N.C. Nwogu, E. Gobina, Preparation and characterization of inorganic membranes for hydrogen separation. Int. J. Hydrogen Energy 41, 8221–8227 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.179

    Article  CAS  Google Scholar 

  136. M.B. Karimi, S. Hassanajili, G. Khanbabaei, Capillary condensation mechanism for gas transport in fiber reinforced poly (ether-b-amide) membranes. Chem. Eng. Res. Des. 148, 180–190 (2019). https://doi.org/10.1016/j.cherd.2019.06.002

    Article  CAS  Google Scholar 

  137. H. Yin, T. Lee, J. Choi, A.C.K. Yip, On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous Mesoporous Mater. 233, 70–77 (2016). https://doi.org/10.1016/j.micromeso.2015.10.033

    Article  CAS  Google Scholar 

  138. S. Nayebossadri, J.D. Speight, D. Book, Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes. Int. J. Hydrogen Energy 44, 29092–29099 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.044

    Article  CAS  Google Scholar 

  139. Perez E V., Karunaweera C, Musselman IH, et al (2016) Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations. Processes 4:. https://doi.org/10.3390/pr4030032

  140. Global market of membrane technology. https://www.marketsandmarkets.com/Market-Reports/membrane-filtration-market-68840418.html. Accessed 18 Jan 2023

  141. Shukla AK, Alam J, Alhoshan M (2022) Recent advancements in polyphenylsulfone membrane modification methods for separation applications. Membranes (Basel) 12:. https://doi.org/10.3390/membranes12020247

  142. Bernardo, P.,  Clarizia, G. (2013). 30 years of membrane technology for gas separation. Chemical engineering transactions, 32, 1999–2004.

  143. Roberto Castro-Muñoz, Violeta Martin-Gil, Mohd Zamidi Ahmad & Vlastimil Fíla (2018) Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art, Chemical Engineering Communications, 205:2, 161-196, https://doi.org/10.1080/00986445.2017.1378647

  144. A. Naquash, M.A. Qyyum, Y.D. Chaniago et al., Separation and purification of syngas-derived hydrogen: a comparative evaluation of membrane- and cryogenic-assisted approaches. Chemosphere 313, 137420 (2023). https://doi.org/10.1016/j.chemosphere.2022.137420

    Article  CAS  Google Scholar 

  145. F. Radmanesh, E.J.R. Sudhölter, A. Tena et al., Thin-film composite cyclomatrix poly(phenoxy)phosphazenes membranes for hot hydrogen separation. Adv. Mater. Interfaces 10, 2202077 (2023). https://doi.org/10.1002/admi.202202077

    Article  CAS  Google Scholar 

  146. J.I. Postma, A. Ferrari, A.J. Böttger, Monte Carlo simulations of surface segregation to discover new hydrogen separation membranes. Int. J. Hydrogen Energy 48, 2221–2230 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.057

    Article  CAS  Google Scholar 

  147. G. Ji, X. Yin, W. Fu et al., Enhancement of hydrogen clean energy production from greenhouse gas by in-situ hydrogen separation with a cobalt-silica membrane. J. Clean. Prod. 388, 135874 (2023). https://doi.org/10.1016/j.jclepro.2023.135874

    Article  CAS  Google Scholar 

  148. D. Grainger, M.B. Hägg, The recovery by carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int. J. Hydrogen Energy 33, 2379–2388 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.001

    Article  CAS  Google Scholar 

  149. M. Kajiwara, S. Uemiya, T. Kojima, E. Kikuchi, Hydrogen permeation properties through composite membranes of platinum supported on porous alumina. Catal. Today 56, 65–73 (2000). https://doi.org/10.1016/S0920-5861(99)00263-1

    Article  CAS  Google Scholar 

  150. Riasat Harami H, Amirkhani F, Khadem SA, et al (2019) Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: molecular dynamics and grand canonical Monte Carlo simulations. Int Commun Heat Mass Transf 108:. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.005

  151. C. Xu, W. Wei, Y. He, Enhanced hydrogen separation performance of Linde Type-A zeolite molecular sieving membrane by cesium ion exchange. Mater. Lett. 324, 132680 (2022). https://doi.org/10.1016/j.matlet.2022.132680

    Article  CAS  Google Scholar 

  152. Valencia-Osorio LM, Álvarez-Láinez ML (2021) Global view and trends in electrospun nanofiber membranes for particulate matter filtration: a review. Macromol Mater Eng 306:. https://doi.org/10.1002/mame.202100278

  153. A. H. Jazwinski, Stochastic Processes and Filtering Theory, New York:Academic, 1970.

  154. L. Jing, K. Shim, C.Y. Toe et al., Electrospun polyacrylonitrile-ionic liquid nanofibers for superior PM2.5 capture capacity. ACS Appl. Mater. Interfaces 8, 7030–7036 (2016). https://doi.org/10.1021/acsami.5b12313

    Article  CAS  Google Scholar 

  155. A.K. Selvam, G. Nallathambi, Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fibers Polym 16, 1327–1335 (2015). https://doi.org/10.1007/s12221-015-1327-8

    Article  CAS  Google Scholar 

  156. X. Zhao, L. Chen, Y. Guo et al., Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification. Appl. Mater. Today 14, 96–101 (2019). https://doi.org/10.1016/j.apmt.2018.11.012

    Article  Google Scholar 

  157. Pal P (2020) Introduction to membrane-based technology applications. In: Membrane-Based Technologies for Environmental Pollution Control. pp 71–100 https://doi.org/10.1016/B978-0-12-819455-3.00002-9

  158. A. Palika, A. Armanious, A. Rahimi et al., An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat. Nanotechnol. 16, 918–925 (2021). https://doi.org/10.1038/s41565-021-00920-5

    Article  CAS  Google Scholar 

  159. Peydayesh M, Mezzenga R (2021) Protein nanofibrils for next generation sustainable water purification. Nat Commun 12:. https://doi.org/10.1038/s41467-021-23388-2

  160. M.R. Patel, N.L. Panwar, Resources, Conservation & Recycling Advances Biochar from agricultural crop residues : environmental, production, and life cycle assessment overview. Resour Conserv Recycl Adv 19, 200173 (2023). https://doi.org/10.1016/j.rcradv.2023.200173

    Article  Google Scholar 

  161. A.L. Athayde, R.W. Baker, P. Nguyen, Metal composite membranes for hydrogen separation. J Memb Sci 94, 299–311 (1994). https://doi.org/10.1016/0376-7388(94)00042-5

    Article  CAS  Google Scholar 

  162. V. Nain, M. Kaur, K.S. Sandhu et al., Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. Int. J. Biol. Macromol. 162, 24–30 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.125

    Article  CAS  Google Scholar 

  163. Razman KK, Hanafiah MM, Mohammad AW (2022) An overview of LCA applied to various membrane technologies: progress, challenges, and harmonization. Environ Technol Innov 27:. https://doi.org/10.1016/j.eti.2022.102803

  164. Lanjekar PR, Dulawat MS, Makavana J, Chauhan PM (2023) Solar-powered farm rickshaw for agricultural transport. Energy Nexus 9:. https://doi.org/10.1016/j.nexus.2023.100181

  165. G. Coppola, M.T. Gaudio, C.G. Lopresto et al., Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Syst Environ 5, 231–251 (2021). https://doi.org/10.1007/s41748-021-00208-7

    Article  Google Scholar 

  166. W.F. Maier, I.-C. Tilgner, M. Wiedorn et al., Microporous inorganic membranes: preparation, characterization and separation properties. Adv. Mater. 5, 730–735 (1993). https://doi.org/10.1002/adma.19930051009

    Article  CAS  Google Scholar 

  167. Shen L, Huang Z, Liu Y, et al (2020) Polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation: a brief review. Front Chem 8:. https://doi.org/10.3389/fchem.2020.00224

  168. Y. Yu, L. Ren, M. Liu et al., Polyphenylene sulfide ultrafine fibrous membrane modified by nanoscale ZIF-8 for highly effective adsorption, interception, and recycling of iodine vapor. ACS Appl. Mater. Interfaces 11, 31291–31301 (2019). https://doi.org/10.1021/acsami.9b09345

    Article  CAS  Google Scholar 

  169. Ren G, Wan K, Kong H, et al (2023) Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 305:. https://doi.org/10.1016/j.carbpol.2023.120537

  170. M. Amin, A.S. Butt, J. Ahmad et al., Issues and challenges in hydrogen separation technologies. Energy Rep. 9, 894–911 (2023). https://doi.org/10.1016/j.egyr.2022.12.014

    Article  Google Scholar 

  171. P. Kumari, B. Mohanty, Maximization of hydrogen production from pine needles steam gasification based on response surface methodology. Biomass Convers Biorefinery 12, 2335–2348 (2022). https://doi.org/10.1007/s13399-020-00761-7

    Article  CAS  Google Scholar 

  172. W. Chen, Z. Gu, G. Ran, Q. Li, Application of membrane separation technology in the treatment of leachate in China: A review. Waste Manag. 121, 127–140 (2021). https://doi.org/10.1016/j.wasman.2020.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Pranay Lanjekar sincerely acknowledged the Indian Council of Agriculture Research (ICAR), Government of India, for providing Research Fellowship (F. No. AGRIL.EDN/1/1/2022-Exam Cell sated 24.02.2022).

Author information

Authors and Affiliations

Authors

Contributions

PRL: conceptualization and writing the original draft. NLP: literature analysis and editing.

Corresponding author

Correspondence to Narayan Lal Panwar.

Ethics declarations

Ethic approval

This work does not contain any studies with human participants or animals. All authors provided informed consent to participate in this study.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanjekar, P.R., Panwar, N.L. Hydrogen gas separation through membrane technology and sustainability analysis of membrane: a review. emergent mater. 6, 1727–1750 (2023). https://doi.org/10.1007/s42247-023-00561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00561-5

Keywords

Navigation