Skip to main content

Advertisement

Log in

Enhancing physical characteristics of thermotropic nematic liquid crystals by dispersing in various nanoparticles and their potential applications

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Herein, we have summarized the doping of thermotropic nematic liquid crystals (LCs) with different nanoparticles (NPs) and its consequences on dielectric, optical, and electro-optical properties. The challenging task is to improve the physical properties of nematic LCs for its applications in nanotechnology, which include sophisticated and highly advanced modern displays, tunable lenses, sensors, etc. The negative effects that affect the overall performance of LCs devices are image sticking problem, image flickering, and slow response time which is mainly affected by ions and alignments. The trapping of charged ionic impurities and suppression of screening effect through NPs in LC medium produces strong electric field and van der Waal forces linked with the LC molecules and the alignment layers. The electric field controls the orientation of LC molecules and thus transforms its physical behavior. In this article, we have summarized and discussed the physical properties of thermotropic nematic LCs with the dispersion of NPs. These thermotropic LCs require improvement in their properties for the better functioning of LC products. A decade of enthusiastic research has designed the lane to the suspension of NPs in LC matrix for resolving the issues on nanotechnology. NPs (guest) that are embedded in LCs (hosts) influence its material parameters. The present article focuses on the review of published articles which report various types of NPs (metal oxide NPs, carbon-based NPs, semiconducting NPs, ferroelectric (FE) such as BaTiO3, magnetic NPs, and metallic NPs) as dopants and its sound realization on the physical properties of thermotropic nematic LCs. The topological defects and the effect of dispersion of colloidal particles in nematic LCs have been discussed. The decrease in the anchoring energy with decreasing radius of particles has been revealed. This review considers the significant role of NP self-assembly in LC medium which depends on its shape, size, and surface chemistry that affect the orientation order of LC molecules. From the application point of view, this review provides the literature support where the mixing of LCs and NPs solves the technological problems. The explanation on the improvement in the performance/material parameters is well supported by the experimental literature study reported in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. F.S. Alamro, N.S. Al-Kadhi, S.M. Gomha, S.A. Popoola, M.S. Khushaim, O.A. Alhaddad, H.A. Ahmed, Experimental and theoretical investigations of three-ring ester/azomethine materials. Mater. 15(6), 2312 (2022)

    Article  CAS  Google Scholar 

  2. F.S. Alamro, H.A. Ahmed, N.S. Bedowr, M.S. Khushaim, M.A. El-Atawy, New advanced liquid crystalline materials bearing bis-azomethine as central spacer. Polymers 14(6), 1256 (2022)

    Article  CAS  Google Scholar 

  3. F.S. Alamro, H.A. Ahmed, N.S. Bedowr, M.M. Naoum, A.M. Mostafa, N.S. Al-Kadhi, New liquid crystals based on terminal fatty chains and polymorphic phase formation from their mixtures. Cryst. 12(3), 350 (2022)

    Article  CAS  Google Scholar 

  4. H.A. Ahmed, A. Aboelnaga, Synthesis and mesomorphic study of new phenylthiophene liquid crystals. Liq. Cryst. 49(6), 1–8 (2021)

  5. F.S. Alamro, O.A. Alhaddad, M.M. Naoum, H.A. Ahmed, Polymorphic phases of supramolecular liquid crystal complexes laterally substituted with chlorine. Polymers 13(24), 4292 (2021)

    Article  CAS  Google Scholar 

  6. Z. Sumer, A. Striolo, Nanoparticles shape-specific emergent behaviour on liquid crystal droplets. Mol. Syst. Des. Eng. 5, 449–460 (2020)

    Article  CAS  Google Scholar 

  7. H. Stark, Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 387–474 (2001)

    Article  CAS  Google Scholar 

  8. P. Poulin, V. Cabuil, D.A. Weitz, Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, 4862 (1997)

    Article  CAS  Google Scholar 

  9. M. Škarabot, I. Muševič, Direct observation of interaction of nanoparticles in a nematic liquid crystal. Soft Matter 6, 5476–5481 (2010)

    Article  Google Scholar 

  10. J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12, 1387–1412 (2012)

    Article  Google Scholar 

  11. S. Singh, Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Cryst. 9(9), 75 (2019)

  12. D. Lavrentovich, E.M. Terent’ev, Phase transition altering the symmetry of topological point defects (hedgehogs) in a nematic liquid crystal. Sov. Phys. JETP 64, 1237–1244 (1986)

    Google Scholar 

  13. A. Majumdar, A. Zarnescu, Landau–De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196, 227–280 (2009)

    Article  Google Scholar 

  14. P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Novel colloidal interactions in anisotropic fluids. Science (80-. ) 275, 1770–1773 (1997)

    Article  CAS  Google Scholar 

  15. T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998)

    Article  CAS  Google Scholar 

  16. M. Conradi et al., Janus nematic colloids. Soft Matter 5, 3905–3912 (2009)

    Article  CAS  Google Scholar 

  17. B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama, Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65(2 Pt 1), 021709 (2002)

  18. J. Fukuda, B.I. Lev, K.M. Aoki, H. Yokoyama, Interaction of particles in a deformed nematic liquid crystal. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 66, 13 (2002)

    Article  Google Scholar 

  19. S.B. Chernyshuk, B.I. Lev, Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 84(1 Pt 1), 011707 (2011)

  20. V.M. Pergamenshchik, V.O. Uzunova, Elastic charge density representation of the interactionvia the nematic director field. Eur. Phys. J. E 23, 161–174 (2007)

    Article  CAS  Google Scholar 

  21. V.M. Pergamenshchik, V.O. Uzunova, Coulomb-like interaction in nematic emulsions induced by external torques exerted on the colloids. Phys. Rev. E 76, 011707 (2007)

    Article  CAS  Google Scholar 

  22. O.P. Pishnyak, S. Tang, J.R. Kelly, S.V. Shiyanovskii, O.D. Lavrentovich, Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal. Phys. Rev. Lett. 99, 127802 (2007)

  23. S.J. Kim, J.H. Kim, The interaction of colloidal particles with weak homeotropic anchoring energy in homogeneous nematic liquid crystal cells. Soft Matter 10, 2664–2670 (2014)

    Article  CAS  Google Scholar 

  24. H. Yokoyama, H.A. van Sprang, A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high fields. J. Appl. Phys. 57, 4520 (1998)

    Article  Google Scholar 

  25. R. Pratibha, W. Park, I.I. Smalyukh, Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J. Appl. Phys. 107, 063511 (2010)

    Article  Google Scholar 

  26. A. Choudhary, G. Li, Anisotropic shift of surface plasmon resonance of gold nanoparticles doped in nematic liquid crystal. Opt. Express. 22, 24348–24357 (2014)

    Article  CAS  Google Scholar 

  27. R. Pratibha, K. Park II., W Park Smalyukh, Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt. Express 17, 19459 (2009)

    Article  CAS  Google Scholar 

  28. D.S. Kim, A. Honglawan, S. Yang, D.K. Yoon, Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template. ACS Appl. Mater. Interfaces 9, 7787–7792 (2017)

    Article  CAS  Google Scholar 

  29. S. Saliba, C. Mingotaud, M.L. Kahn, J.-D. Marty, Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale 5, 6641–6661 (2013)

    Article  CAS  Google Scholar 

  30. W. Lewandowski, T. Łojewska, P. Szustakiewicz, J. Mieczkowski, D. Pociecha, Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale 8, 2656–2663 (2016)

    Article  CAS  Google Scholar 

  31. M. Bagiński, A. Szmurło, A. Andruszkiewicz, M. Wójcik, W. Lewandowski, Dynamic self-assembly of nanoparticles using thermotropic liquid crystals. Liq. Cryst. 43, 2391–2409 (2016)

    Article  Google Scholar 

  32. E. Petrescu, C. Cirtoaje, O. Danila, Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields. Beilstein J. Nanotechnol. 9, 399–406 (2018)

    Article  Google Scholar 

  33. I. In, Y.-W. Jun, Y.J. Kim, S.Y. Kim, Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun., 800–801 (2005). https://doi.org/10.1039/B413510E

  34. S. Umadevi, X. Feng, T. Hegmann, Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 23, 1393–1403 (2013)

    Article  CAS  Google Scholar 

  35. M. Borówko, W. Rżysko, S. Sokołowski, T. Staszewski, Self-assembly of hairy disks in two dimensions – insights from molecular simulations. Soft Matter 14, 3115–3126 (2018)

    Article  Google Scholar 

  36. E.S. Harper, B. Waters, S.C. Glotzer, Hierarchical self-assembly of hard cube derivatives. Soft Matter 15, 3733–3739 (2019)

    Article  CAS  Google Scholar 

  37. Y.-D. Yan et al., Insight into the polymerization-induced self-assembly via a realistic computer simulation strategy. Macromolecules 52, 6169–6180 (2019)

    Article  CAS  Google Scholar 

  38. J.K. Whitmer, et al, Nematic-field-driven positioning of particles in liquid crystal droplets. Phys. Rev. Lett. 111, 227801 (2013)

  39. Y. Li et al., Colloidal cholesteric liquid crystal in spherical confinement. Nat. Commun. 17, 1–11 (2016)

    Google Scholar 

  40. G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C. Glotzer, Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931–940 (2013)

    Article  Google Scholar 

  41. M. Rahimi et al., Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc. Natl. Acad. Sci. 112, 5297–5302 (2015)

    Article  CAS  Google Scholar 

  42. F.G. Segura-Fernández, E.F. Serrato-García, J.E. Flores-Calderón, O. Guzmán, Dynamics of nanoparticle self-assembly by liquid crystal sorting in two dimensions. Front. Phys. 9, 636288 (2021)

  43. Z. Sumer, A. Striolo, Effects of droplet size and surfactants on anchoring in liquid crystal nanodroplets. Soft Matter 15, 3914–3922 (2019)

    Article  CAS  Google Scholar 

  44. Y. Li et al., Nanoparticle-laden droplets of liquid crystals: interactive morphogenesis and dynamic assembly. Sci. Adv. 5, eaav1035 (2019)

    Article  CAS  Google Scholar 

  45. W. Feng, L.-D. Sun, C.-H. Yan, Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride. Langmuir 27, 3343–3347 (2011)

    Article  CAS  Google Scholar 

  46. L.M. Rossi, J.L. Fiorio, M.A.S. Garcia, C.P. Ferraz, The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalt. Trans. 47, 5889–5915 (2018)

    Article  CAS  Google Scholar 

  47. S. Orlandi et al., Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape. Phys. Chem. Chem. Phys. 18, 2428–2441 (2016)

    Article  CAS  Google Scholar 

  48. J.G. Gay, B.J. Berne, Modification of the overlap potential to mimic a linear site–site potential. J. Chem. Phys. 74, 3316 (1998)

    Article  Google Scholar 

  49. C. Zannoni, Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646 (2001)

    Article  CAS  Google Scholar 

  50. R. Berardi, C. Fava, C. Zannoni, A Gay-Berne potential for dissimilar biaxial particles. CPL 297, 8–14 (1998)

    Article  CAS  Google Scholar 

  51. M.K. Chalam, K.E. Gubbins, E.D. Miguel, L.F. Rull, A molecular simulation of a liquid-crystal model. Mol. Simul. 7, 357–385 (2006)

    Article  Google Scholar 

  52. E. de Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, F. Van Swol, Location of the isotropic-nematic transition in the Gay-Berne model. Mol. Phys. An Int. J. Interface Between Chem. Phys. 72, 593–605 (2006)

    Google Scholar 

  53. E. De Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, Liquid crystal phase diagram of the Gay-Berne fluid. Mol. Phys. An Int. J. Interface Between Chem. Phys. 74, 405–424 (2007)

    Google Scholar 

  54. A. Rastogi, G. Pathak, A. Srivastava, J. Herman, R. Manohar, Cd1−X ZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Mol. Liq. 255, 93–101 (2018)

    Article  CAS  Google Scholar 

  55. A. Rastogi, R. Manohar, Effect of graphene oxide dispersion in nematic mesogen and their characterization results. Appl. Phys. A. 125, 1–25 (2019)

    Article  CAS  Google Scholar 

  56. Y. Garbovskiy, Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express 2, 012004 (2021)

    Article  Google Scholar 

  57. CHAPTER I Introduction to liquid crystals: phase types, structures

  58. A.R. Karaawi et al., Direct current electric conductivity of ferroelectric liquid crystals–gold nanoparticles dispersion measured with capacitive current technique. Liq. Cryst. 47, 1507–1515 (2020)

    Article  CAS  Google Scholar 

  59. A. Sawada, K. Tarumi, S. Naemura, Novel characterization method of ions in liquid crystal materials by complex dielectric constant measurements. Jpn. J. Appl. Phys. 38, 1423 (1999)

    Article  CAS  Google Scholar 

  60. G. Barbero, L.R. Evangelista, Adsorption phenomena and anchoring energy in nematic liquid crystals. Liq. Cryst. Rev. 2, 72–72 (2014)

    Article  CAS  Google Scholar 

  61. M.V. Khazimullin, Y.A. Lebedev, Influence of dielectric layers on estimates of diffusion coefficients and concentrations of ions from impedance spectroscopy. Phys. Rev. E. 100, 062601 (2019)

    Article  Google Scholar 

  62. C. Colpaert, B. Maximus, A. De Meyere, Adequate measuring techniques for ions in liquid crystal layers. Liq. Cryst. 21, 133–142 (2007)

    Article  Google Scholar 

  63. F. NeytsKand Beunis, Handbook of liquid crystals, volume 2: physical properties and phase behavior of liquid crystals. 2, (2014)

  64. J. Vaxiviere, B. Labroo, P. Martinot-Lagarde, Ion bump in the ferroelectric liquid crystal domains reversal current. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 173, 61–73 (2006)

    Article  Google Scholar 

  65. A. Sugimura et al., Transient currents in nematic liquid crystals. Phys. Rev. B 43, 8272 (1991)

    Article  CAS  Google Scholar 

  66. S. Tomylko, O.V. Yaroshchuk, O. Kovalchuk, Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukr. J. Phys. 57, 239–243 (2012)

    Article  CAS  Google Scholar 

  67. S. Tomylko, O. Yaroshchuk, O. Kovalchuk, U. Maschke, R. Yamaguchi, Dielectric and electro-optical properties of liquid crystals doped with diamond nanoparticles. Mol. Cryst. Liq. Cryst. 541, 35/[273]-43/[281] (2011)

    Article  Google Scholar 

  68. Y. Garbovskiy, Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals. Appl. Phys. Lett. 108, 121104 (2016)

    Article  Google Scholar 

  69. Y. Garbovskiy, Electrical properties of liquid crystal nano-colloids analysed from perspectives of the ionic purity of nano-dopants. Liq. Cryst. 43, 648–653 (2016)

    Article  CAS  Google Scholar 

  70. Y. Garbovskiy, Nanomaterials in liquid crystals as Ion-generating and ion-capturing objects. Crystals. 8(7), 264 (2018)

  71. Y. Garbovskiy, Nanoparticle-enabled ion trapping and ion generation in liquid crystals. Adv. Condens. Matter Phys. 2018, 1–8 (2018)

    Article  Google Scholar 

  72. H. Ayeb, T. Missaoui, A. Mouhli, F. Jomni, T. Soltani, Dielectric spectroscopy study on the impact of magnetic and nonmagnetic nanoparticles dispersion on ionic behavior in nematic liquid crystal. Phase Transitions 94, 37–46 (2020)

    Article  Google Scholar 

  73. L.J. Atwood, R. Basu, Reduced ionic effect and accelerated electro-optic response in a 2D hexagonal boron nitride planar-alignment agent based liquid crystal device. Opt. Mater. Express 9(3), 1441–1449 (2019)

    Article  Google Scholar 

  74. Y.-H. Lin, Y.-J. Wang, V. Reshetnyak, Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 5, 111–143 (2018)

    Article  Google Scholar 

  75. B.R. Kimball et al., Beam shaping diffractive wave plates [Invited]. Appl. Opt. 57, A118–A121 (2018)

    Article  Google Scholar 

  76. I. Abdulhalim, Non-display bio-optic applications of liquid crystals. Liq. Cryst. Today. 20, 44–60 (2011)

    Article  CAS  Google Scholar 

  77. G. Lazarev, P.J. Chen, J. Strauss, N. Fontaine, A. Forbes, Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt. Express 27, 16206–16249 (2019)

    Article  CAS  Google Scholar 

  78. H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 37, 17168–17168 (2018)

    Google Scholar 

  79. Y. Huang, E. Liao, R. Chen, S.-T. Wu, Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018)

    Article  CAS  Google Scholar 

  80. J.M. Otón, E. Otón, X. Quintana, M.A. Geday, Liquid-crystal phase-only devices. J. Mol. Liq. 267, 469–483 (2018)

    Article  Google Scholar 

  81. M.W. Geis, P.J. Bos, V. Liberman, M. Rothschild, Broadband optical switch based on liquid crystal dynamic scattering. Opt. Express 24, 13812 (2016)

    Article  CAS  Google Scholar 

  82. E.A. Konshina, D.P. Shcherbinin, Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics. Liq. Cryst. 45, 292–302 (2017)

    Article  Google Scholar 

  83. R. Camley, Z. Celinski, Y. Garbovskiy, A. Glushchenko, Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges. Liq. Cryst. Rev. 6, 17–52 (2018)

    Article  CAS  Google Scholar 

  84. R. Jakoby, A. Gaebler, C. Weickhmann, Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Cryst. 10, 514 (2020)

    Article  CAS  Google Scholar 

  85. R. Dabrowski et al., Fluorinated smectics – new liquid crystalline medium for smart windows and memory displays. J. Mol. Liq. 267, 415–427 (2018)

    Article  CAS  Google Scholar 

  86. I. Abdulhalim, M. Diab, P.L. Madhuri, T. Mokari, Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows. Opt. Express. 27, 17387–17401 (2019)

    Article  CAS  Google Scholar 

  87. Y. Zhan, H. Lu, M. Jin, G. Zhou, Electrohydrodynamic instabilities for smart window applications. Liq. Cryst. 47, 977–983 (2019)

    Article  Google Scholar 

  88. P.K. Tripathi et al., Improved dielectric and electro-optical parameters of ZnO nano-particle (8% Cu 2+) doped nematic liquid crystal. J. Mol. St. 1035, 371–377 (2013)

    Article  CAS  Google Scholar 

  89. W. Ye, et al., Improvement of image sticking in liquid crystal display doped with γ-Fe2O3 nanoparticles. Nanomaterials. 8(1), 5 (2018)

  90. H.H.M. Elkhalgi, S. Khandka, N. Yadav, R. Dhar, R. Dabrowski, Effects of manganese (II) titanium oxide nano particles on the physical properties of a room temperature nematic liquid crystal 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzene. J. Mol. Liq. 268, 223–228 (2018)

    Article  CAS  Google Scholar 

  91. C.W. Oh, E.G. Park, H.G. Park, Enhanced electro-optical properties in titanium silicon oxide nanoparticle doped nematic liquid crystal system. Surf. Coatings Technol. 360, 50–55 (2019)

    Article  CAS  Google Scholar 

  92. K.K. Pandey, A.K. Misra, R. Manohar, Nano-doped weakly polar versus highly polar liquid crystal. Appl. Nanosci. 6, 141–148 (2016)

    Article  CAS  Google Scholar 

  93. C.Y. Huang, P. Selvaraj, G. Senguttuvan, C.J. Hsu, Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy. J. Mol. Liq. 286, 110902 (2019)

  94. B.P. Singh et al., Liquid crystal lens with doping of rutile titanium dioxide nanoparticles. Opt. Express. 28, 22856–22866 (2020)

    Article  Google Scholar 

  95. B.P. Singh et al., Electro-optical characterization of a weakly polar liquid crystalline compound influenced polyvinyl pyrrolidone capped gold nanoparticles. J. Mol. Liq. 325, 115172 (2021)

    Article  CAS  Google Scholar 

  96. G. Jamwal et al., Effect of nickel oxide nanoparticles on dielectric and optical properties of nematic liquid crystal. AIP Conf. Proc. 1675, 030065 (2015)

    Article  Google Scholar 

  97. D. Varshney, A. Parveen, J. Prakash, Effect of cobalt oxide nanoparticles on dielectric properties of a nematic liquid crystal material. J. Dispers. Sci. Technol. (2020). https://doi.org/10.1080/01932691.2020.1813591

    Article  Google Scholar 

  98. M. Mishra, R. Uttam, R. Dhar, R.S. Dabrowski, Incorporation of magnesium oxide nanoparticles in to nematic liquid crystalline matrix. Mol. Cryst. Liq. Cryst. 708, 26–38 (2021)

    Article  Google Scholar 

  99. A. Sharma, P. Kumar, P. Malik, Textural and electro-optical study of a room temperature nematic liquid crystal 4̍-pentyl-4-biphenylcarbonitrile doped with metal oxide nanowires in planar and in-plane switching cell configurations. Liq. Cryst. 47, 1663–1677 (2020)

    Article  CAS  Google Scholar 

  100. C.-Z. Li, H.-L. Yip, A.K.-Y. Jen, Functional fullerenes for organic photovoltaics. J. Mater. Chem. 22, 4161–4177 (2012)

    Article  CAS  Google Scholar 

  101. S.E. San, O. Köysal, M. Okutan, Laser-induced dielectric anisotropy of a hybrid liquid crystal composite made up of methyl red and fullerene C60. J. Non. Cryst. Solids 351, 2798–2801 (2005)

    Article  CAS  Google Scholar 

  102. M. Okutan, S. Eren San, E. Basaran, F. Yakuphanoglu, Determination of phase transition from nematic to isotropic state in carbon nano-balls’ doped nematic liquid crystals by electrical conductivity-dielectric measurements. Phys. Lett. A 339, 461–465 (2005)

    Article  CAS  Google Scholar 

  103. R.K. Shukla, K.K. Raina, W. Haase, Fast switching response and dielectric behaviour of fullerene/ferroelectric liquid crystal nanocolloids. Liq. Cryst. 41, 1726–1732 (2014)

    Article  CAS  Google Scholar 

  104. X. Zhang, B. Yu, H. Cong, Recent developments in fullerene-containing thermotropic liquid crystals. Curr. Org. Chem. 21(16), 1600–1611 (2017)

  105. R. Basu, A. Garvey, D. Kinnamon, Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J. Appl. Phys. 117, 074301 (2015)

    Article  Google Scholar 

  106. R. Basu, D. Kinnamon, A. Garvey, Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl. Phys. Lett. 106, 201909 (2015)

    Article  Google Scholar 

  107. S. Javadian, N. Dalir, J. Kakemam, Non-covalent intermolecular interactions of colloidal nematic liquid crystals doped with graphene oxide. Liq. Cryst. 44, 1341–1355 (2017)

    Article  CAS  Google Scholar 

  108. V. Lapanik, S. Timofeev, W. Haase, Electro-optic properties of nematic and ferroelectric liquid crystalline nanocolloids doped with partially reduced graphene oxide. Phase Transitions 89, 133–143 (2015)

    Article  Google Scholar 

  109. M. Mrukiewicz, K. Kowiorski, P. Perkowski, R. Mazur, M. Djas, Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein J. Nanotechnol. 10, 71 (2019)

    Article  CAS  Google Scholar 

  110. R.K. Shukla et al., Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots. RSC Adv. 5, 34491–34496 (2015)

    Article  CAS  Google Scholar 

  111. M.-J. Cho et al., Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 41, 761–767 (2014)

    Article  CAS  Google Scholar 

  112. S. Al-Zangana, M. Iliut, M. Turner, A. Vijayaraghavan, I. Dierking, Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv. Opt. Mater. 4, 1541–1548 (2016)

    Article  CAS  Google Scholar 

  113. M. Sawamura et al., Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nat. 419, 702–705 (2002)

    Article  CAS  Google Scholar 

  114. M. Lehmann, M. Hügel, A perfect match: fullerene guests in star-shaped oligophenylenevinylene mesogens. Angew. Chemie Int. Ed. 54, 4110–4114 (2015)

    Article  CAS  Google Scholar 

  115. T. Hegmann, H. Qi, V.M. Marx, Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym. Mater. 17, 483–508 (2007)

    Article  CAS  Google Scholar 

  116. O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top. Curr. Chem. 318, 331–393 (2011)

    Article  Google Scholar 

  117. A. Rastogi, F.P. Pandey, G. Hegde, R. Manohar, Time-resolved fluorescence and UV absorbance study on Elaeis guineensis/oil palm leaf based carbon nanoparticles doped in nematic liquid crystals. J. Mol. Liq. 304, 112773 (2020)

    Article  CAS  Google Scholar 

  118. A. Rastogi, G. Hegde, T. Manohar, R. Manohar, Effect of oil palm leaf-based carbon quantum dot on nematic liquid crystal and its electro-optical effects. Liq. Cryst. 48, 812–831 (2020)

    Article  Google Scholar 

  119. A. Rastogi et al., Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties. J. Nanostructure Chem. 11, 527–548 (2021). https://doi.org/10.1007/S40097-020-00382-6

    Article  CAS  Google Scholar 

  120. F.P. Pandey et al., Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). OptMat. 105, 109849 (2020)

    CAS  Google Scholar 

  121. D.K. Gaur et al., Investigation of dielectric and optical properties of pure and diamond nanoparticles dispersed nematic liquid-crystal PCH5. Liq. Cryst. 48, 1–11 (2020). https://doi.org/10.1080/02678292.2020.1855679

    Article  CAS  Google Scholar 

  122. G. Singh, M. Fisch, S. Kumar, Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review. Rep. Prog. Phys. 79(5), 056502 (2016)

  123. G. Singh, M.R. Fisch, S. Kumar, Tunable polarised fluorescence of quantum dot doped nematic liquid crystals. Liq. Cryst. 44, 444–452 (2016)

    Article  Google Scholar 

  124. A. Roy, K. Agrahari, A. Srivastava, R. Manohar, Plasmonic resonance instigated enhanced photoluminescence in quantum dot dispersed nematic liquid crystal. Liq. Cryst. 46, 1224–1230 (2018)

    Article  Google Scholar 

  125. X. Liu et al., Physical properties of liquid crystals doped with CsPbBr 3 quantum dots. Liq. Cryst. (2021). https://doi.org/10.1080/02678292.2020.1870009

    Article  Google Scholar 

  126. P. Zhou, Y. Li, S. Liu, Y. Su, Colour 3D holographic display based on a quantum-dot-doped liquid crystal. Liq. Cryst. 46, 1478–1484 (2019)

    Article  CAS  Google Scholar 

  127. Y. Wang, Y. Li, J. Lin, S. Liu, Y. Su, Dynamic direct-writing optical holographic display based on quantum-dot-doped liquid crystal. Liq. Cryst. 48, 844–849 (2020)

    Article  Google Scholar 

  128. Y. Reznikov et al., Ferroelectric nematic suspension. Appl. Phys. Lett. 82, 1917 (2003)

    Article  CAS  Google Scholar 

  129. F. Li et al., Orientational coupling amplification in ferroelectric nematic colloids. Phys. Rev. Lett. 97, 147801 (2006)

    Article  Google Scholar 

  130. A. Glushchenko et al., Ferroelectric particles in liquid crystals: recent frontiers. Mol. Cryst. Liq. Cryst. 453, 227–237 (2006)

    Article  CAS  Google Scholar 

  131. J.-F. Blach et al., BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization. J. Appl. Phys. 107, 074102 (2010)

    Article  Google Scholar 

  132. U.B. Singh, R. Dhar, R. Dabrowski, M.B. Pandey, Enhanced electro-optical properties of a nematic liquid crystals in presence of BaTiO3 nanoparticles. Liq. Cryst. 41, 953–959 (2014)

    Article  CAS  Google Scholar 

  133. M. Mishra, R.S. Dabrowski, R. Dhar, Thermodynamical, optical, electrical and electro-optical studies of a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl dispersed with barium titanate nanoparticles. J. Mol. Liq. 213, 247–254 (2016)

    Article  CAS  Google Scholar 

  134. S. Klein, et al., The influence of suspended nanoparticles on the Frederiks threshold of the nematic host. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1988), (2013)

  135. Y. Garbovskiy, A. Glushchenko, Ferroelectric nanoparticles in liquid crystals: recent progress and current challenges. Nanomater. 7, 361 (2017)

    Article  Google Scholar 

  136. S. Al-Zangana, M. Turner, I. Dierking, A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J. Appl. Phys. 121, 085105 (2017)

    Article  Google Scholar 

  137. R. Dubey, A. Mishra, K.N. Singh, P.R. Alapati, R. Dhar, Electric behaviour of a Schiff’s base liquid crystal compound doped with a low concentration of BaTiO3 nanoparticles. J. Mol. Liq. 225, 496–501 (2017)

    Article  CAS  Google Scholar 

  138. F. P. Pandey, S. Singh, Time resolved fluorescence and Raman properties, and zeta potential of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). J. Mol. Liq. 315, 113820 (2020)

  139. F.P. Pandey, A. Rastogi, R. Manohar, R. Dhar, S. Singh, Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4’-Heptyl-4-biphenylcarbonnitrile. Liq. Cryst. 47, 1025–1040 (2020)

    Article  CAS  Google Scholar 

  140. I. Dierking, M. Heberle, M.A. Osipov, F. Giesselmann, Ordering of ferromagnetic nanoparticles in nematic liquid crystals. Soft Matter 13, 4636–4643 (2017)

    Article  CAS  Google Scholar 

  141. F. Jahanbakhsh, et al., Dispersion of multiferroic BiFeO3 nanoparticles in nematic liquid crystals. Appl. Phys. A Mater. Sci. Process. 125(12), 877 (2019)

  142. M. Chemingui, U.B. Singh, N. Yadav, R.S. Dabrowski, R. Dhar, Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J. Mol. Liq. 319, 114299 (2020)

    Article  CAS  Google Scholar 

  143. S.K. Prasad, M.V. Kumar, T. Shilpa, C.V. Yelamaggad, Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 4, 4453–4462 (2013)

    Article  Google Scholar 

  144. S. Sridevi, S.K. Prasad, G.G. Nair, V. D’Britto, B.L.V. Prasad, Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system. Appl. Phys. Lett. 97, 151913 (2010)

    Article  Google Scholar 

  145. A.S. Pandey, R. Dhar, S. Kumar, R. Dabrowski, Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles. Liq. Cryst. 38, 115–120 (2011)

    Article  CAS  Google Scholar 

  146. U.B. Singh, R. Dhar, R. Dabrowski, M.B. Pandey, Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq. Cryst. 40, 774–782 (2013)

    Article  CAS  Google Scholar 

  147. K. Kaneko, Y. Ujihara, K. Oto, T. Hashinshin, T. Hanasaki, Electric-field-induced viscosity change of a nematic liquid crystal with gold nanoparticles. Chemphyschem 16, 919–922 (2015)

    Article  CAS  Google Scholar 

  148. H.H.M. Elkhalgi et al., Dielectric and electro-optical properties of a nematic liquid crystalline material with gold nanoparticles. Liq. Cryst. 45, 1795–1801 (2018)

    Article  CAS  Google Scholar 

  149. D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols, A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000)

    Article  CAS  Google Scholar 

  150. C.L. Haynes et al., Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B. 107, 7337–7342 (2003)

    Article  CAS  Google Scholar 

  151. P. Tripathi, M. Mishra, S. Kumar, R. Dabrowski, R. Dhar, Dependence of physical parameters on the size of silver nano particles forming composites with a nematic liquid crystalline material. J. Mol. Liq. 268, 403–409 (2018)

    Article  CAS  Google Scholar 

  152. H. Raether, Surface excitations. In Excitation of Plasmons and Interband Transitions by Electrons.Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980). https://doi.org/10.1007/BFB0045952

  153. Y. Fu, J. Zhang, J.R. Lakowicz, Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J. Am. Chem. Soc. 132, 5540–5541 (2010)

    Article  CAS  Google Scholar 

  154. K. Kneipp et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  CAS  Google Scholar 

  155. J.-H. Song, T. Atay, S. Shi, H. Urabe, A.V. Nurmikko, Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett 5, 1557–1561 (2005)

    Article  CAS  Google Scholar 

  156. H. Zhang et al., Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chemie Int. Ed. 49, 2865–2868 (2010)

    Article  CAS  Google Scholar 

  157. M.A. Noginov et al., Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)

    Article  CAS  Google Scholar 

  158. M.I. Stockman, Spasers explained. Nat. Photonics. 2, 327–329 (2008)

    Article  CAS  Google Scholar 

  159. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008)

    Article  Google Scholar 

  160. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nat. 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  161. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science (80-. ) 308, 534–537 (2005)

    Article  CAS  Google Scholar 

  162. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science (80-. ) 315, 1686–1686 (2007)

    Article  CAS  Google Scholar 

  163. L. Shao, X. Zhuo, J. Wang, Advanced plasmonic materials for dynamic color display. Adv. Mater. 30, 1704338 (2018)

    Article  Google Scholar 

  164. A.A. Lazarides, K. Lance Kelly, T.R. Jensen, G.C. Schatz, Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J. Mol. Struct. THEOCHEM 529, 59–63 (2000)

    Article  CAS  Google Scholar 

  165. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001)

    Article  CAS  Google Scholar 

  166. V. Myroshnychenko et al., Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)

    Article  CAS  Google Scholar 

  167. A. Choudhary, G. Singh, A.M. Biradar, Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743–7756 (2014)

    Article  CAS  Google Scholar 

  168. P. N. Prasad, Nanophotonics, 2004, p.418. Nanophotonics 432 (2004)

  169. T. Jensen, L. Kelly, A. Lazarides, G.C. Schatz, Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J. Clust. Sci. 10, 295–317 (1999)

    Article  CAS  Google Scholar 

  170. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  171. B. Chen, X. Zeng, U. Baumeister, G. Ungar, C. Tschierske, Liquid crystalline networks composed of pentagonal, square, and triangular cylinders. Science (80-. ) 307, 96–99 (2005)

    Article  CAS  Google Scholar 

  172. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002)

    Article  CAS  Google Scholar 

  173. L.D. Sio, R. Caputo, U. Cataldi, C. Umeton, Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials. J. Mater. Chem. 21, 18967–18970 (2011)

    Article  Google Scholar 

  174. E.M. Yeatman, M.E. Caldwell, Surface-plasmon spatial light modulators based on liquid crystal. Appl. Opt. 31, 3880–3891 (1992)

    Article  Google Scholar 

  175. S. Y. Park, D. Stroud, Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle. Phys. Rev. Lett. 94, 217401 (2005)

  176. P.A. Kossyrev et al., Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 5, 1978–1981 (2005)

    Article  CAS  Google Scholar 

  177. K.C. Chu, C.Y. Chao, Y.F. Chen, Y.C. Wu, C.C. Chen, Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 89, 103107 (2006)

  178. P.R. Evans, et al., Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal. Appl. Phys. Lett. 91, 043101 (2007)

  179. S. Khatua et al., Plasmonic nanoparticles−liquid crystal composites†. J. Phys. Chem. C. 114, 7251–7257 (2009)

    Article  Google Scholar 

  180. Q. Liu, Y. Yuan, I.I. Smalyukh, Electrically and optically tunable plasmonic guest–host liquid crystals with long-range ordered nanoparticles. Nano Lett. 14, 4071–4077 (2014)

    Article  CAS  Google Scholar 

  181. Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, I.I. Smalyukh, Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and e-polarizers. ACS Nano 9, 3097–3108 (2015)

    Article  CAS  Google Scholar 

  182. D. Li, F. Liu, G.J. Ren, P. Fu, J.Q. Yao, Liquid crystal-modulated tunable filter based on coupling between plasmon-induced transparency and cavity mode. Opt. Eng. 57, 097101 (2018)

    Article  Google Scholar 

  183. B. Rožič et al., Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects. ACS Nano 11, 6728–6738 (2017)

    Article  Google Scholar 

  184. G.H. Sheetah, Q. Liu, B. Senyuk, B. Fleury, I.I. Smalyukh, Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes. Opt. Express 26, 22264–22272 (2018)

    Article  CAS  Google Scholar 

  185. G.H. Sheetah, I.I. Smalyukh, Q. Liu, Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods. Opt. Lett. 41, 4899–4902 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The Department of Science and Technology (SERB), India—CRG/2019/000903 (Core Research Grant) and SB/S2/RJN-140/2014 (Ramanujan Fellowship Award)—provided financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Singh Parmar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, A., Mishra, A., Pandey, F.P. et al. Enhancing physical characteristics of thermotropic nematic liquid crystals by dispersing in various nanoparticles and their potential applications. emergent mater. 6, 101–136 (2023). https://doi.org/10.1007/s42247-022-00406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00406-7

Keywords

Navigation