Skip to main content
Log in

Optical and Dielectric Properties of ZnO Nematic Liquid Crystals Prepared by the Chemical Precipitation Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Mesogenic 4-pentyl-4′-cyanobiphenyl (5CB) is a commonly used dielectric material for display devices and liquid crystal biosensors. A small concentration of ZnO nanoparticles was dispersed in 5CB nematic liquid crystals by the chemical precipitation method. The phase changes, phase retardation, and transition temperature of the prepared samples were studied by polarizing optical microscopy (POM) and differential scanning calorimetry analysis. The dielectric properties were measured by dielectric spectroscopy, which was performed within the frequency range from 1 Hz to 10 MHz. A novel phase was identified and confirmed by the dielectric parameters in dispersed ZnO 5CB (N5CB). Specifically, the temperature dependence of relaxation times was estimated for both the samples, which strengthen the POM studies and the influence of nanoparticles on the lattice arrangement. The temperature dependence and the dispersion effect of ZnO nanoparticles on the dielectric constant and dielectric losses were also studied. The sensitivity of mesogenic phases to external forces was confirmed through the present work. From all these results, it has been concluded that N5CB finds potential application in the preparation of fast switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Achour, R. L. Porto, M. Akram Soussou, M. Islam, M. Boujtita, K. Ait, A. Djouadi, and T. Brousse, J. Power Sour., 300, 525–532 (2015).

    Article  ADS  Google Scholar 

  2. X. Wang and P. See Lee, J. Mater. Chem. A, 3, 21706–21712 (2015).

    Article  Google Scholar 

  3. Q. Ke and J. Wang, J. Materiomics, 2, 37–54 (2016).

    Article  Google Scholar 

  4. S. Sampath, D. D. Sarma, and A. K. Shukla, ACS Energy Lett., 1, 1162–1164 (2016).

    Article  Google Scholar 

  5. O. Muntesharia, J. Lauc, A. Krishnana, B. Dunnc, and L. Pilon, J. Power Sour., 374, 257–268 (2018).

    Article  ADS  Google Scholar 

  6. A. Armutlulu, L. A. Bottomley, S. A. Bidstrup Allen, and M. G. Allen, Chem. Electrochem., 2, 236–245 (2014).

    Google Scholar 

  7. L. N. Jin, F. Shao, C. Jin, J. N. Zhang, P. Liu, M. X. Guo, and S. W. Bian, Electrochim. Acta, 249, 387–394 (2017).

    Article  Google Scholar 

  8. S. Sreehari Sastry, S. Salma Begum, T. Vindhya Kumari, V. R. K. Murthy, and S. T. Ha, Asian J. Chem., 9, 2462–2471 (2012).

    Google Scholar 

  9. K. V. Surya Narayana Raju, S. Salma Begum, B. Dharma Sagar, and S. Babu, Rasayan J. Chem., 10, 37–45 (2017).

    Google Scholar 

  10. A. K. Srivastava, A. K. Misra, P. B. Chand, R. Manohar, and J. P. Shukla, Phys. Lett. A, 37, 490–498 (2007).

    Article  ADS  Google Scholar 

  11. R. Manohar, S. P. Yadav, A. K. Srivastava, A. K. Misra, K. K. Pandey, P. K. Sharma, and A. C. Pandey, Jpn. J. Appl. Phys., 48, 101501–101506 (2009).

    Article  ADS  Google Scholar 

  12. J. L. Gomez and O. Tigli, J. Mater. Sci., 48, No. 2, 612–624 (2013).

    Article  ADS  Google Scholar 

  13. M. Chaari and A. Matoussi, Phys. B Condens. Mater., 407, 3441–3447 (2012).

    Article  ADS  Google Scholar 

  14. P. G. Cummins, D. A. Dunmur, and D. A. Laidler, J. Mol. Cryst. Liq. Cryst., 30, 109–123 (1975).

    Article  ADS  Google Scholar 

  15. A. Bogi and S. Faetti, J. Liq. Cryst., 28, 729–739 (2001).

    Article  Google Scholar 

  16. V. A. Greanya, A. P. Malanoski, B. T. Weslowski, and M. S. Spector, Liq. Cryst., 32, 933–941 (2007).

    Article  Google Scholar 

  17. S. I. Zhou, K. Neupane, Y. A. Nastishin, A. R. Baldwin, S. V. Shiyanovskii, O. D. Lavrentovich, and S. Sprunt, Liq. Cryst., 10, 6571–6581 (2017).

    Google Scholar 

  18. S. Mohyeddine, M. B. Pandey, and D. Revannasiddaiah, Phase Trans., 82, 11–18 (2009).

    Article  Google Scholar 

  19. M. A. Bates and G. R. Luckhurst, Mol. Phys., 99, 1365–1371 (2001).

    Article  ADS  Google Scholar 

  20. C. Wakai, A. Oleinikova, M. Ott, and H. Weingärtner, J. Phys. Chem. B, 109, 17028–17030 (2005).

    Article  Google Scholar 

  21. A. Hourri, T. K. Bose, and J. Thoen, Phys. Rev. E, 63, 051702 (2001).

    Article  ADS  Google Scholar 

  22. B. J. Thoen and T. K. Bose, Handbook of Low and High Dielectric Materials and their Applications, H. S. Nalwa Academic Press, San Diego, Vol. 1, pp. 501–561 (1999).

    Google Scholar 

  23. K. Rajendiran, K. Thananjeyan, and S. T. Yoganandham, Inorg. Chem. Comm., 117, 107954(1–7) (2020).

    Article  Google Scholar 

  24. V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo, Langmuir, 28, 6124–6131 (2012).

    Article  Google Scholar 

  25. R. P. Pan, T. R. Tsai, C. Y. Chen, C. H. Wang, and C. L. Pan, Mol. Cryst. Liq. Cryst., 409, 137–144 (2004).

    Article  Google Scholar 

  26. K. Tripathi, K. Mishra, S. M. Swadesh, K. Guptha, and R. Manohar, J. Mol. Struct., 1035, 371–377 (2013).

    Article  ADS  Google Scholar 

  27. A. A. Ward, State of the ArtDielectric Materials for Advanced Applications, National Research Centre, Egypt (2015).

    Google Scholar 

  28. M. M. Abdel-Aal, M. A. Ahmed, and L. Ateya, J. Phys. Soc. Jpn., 65, 3351–3356 (1996).

    Article  ADS  Google Scholar 

  29. A. K. Jonscher, J. Phys. D: Appl. Phys., 32, 57–70 (1999).

    Article  ADS  Google Scholar 

  30. C. C. Homes, S. M. Shapiro, and T. Vogt, Sciences, 293, 673–676 (2001).

    Article  Google Scholar 

  31. A. J. Martin, G. Meier, and A. Saupe, Symp. Faraday Soc., 5, 119–133 (1971).

    Article  Google Scholar 

  32. G. Meir and A. Saupe, Mol. Cryst. Liq. Cryst., 1, 515–525 (1996).

    Article  Google Scholar 

  33. B. Bahadur, R. K. Sarna, and V. G. Bhide, Mol. Cryst. Liq. Cryst., 88, 151–165 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Rao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, p. 437, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, K.V.S.N., Begum, S.S., Madhav, B.T.P. et al. Optical and Dielectric Properties of ZnO Nematic Liquid Crystals Prepared by the Chemical Precipitation Method. J Appl Spectrosc 89, 602–611 (2022). https://doi.org/10.1007/s10812-022-01400-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01400-x

Keywords

Navigation