Skip to main content
Log in

Effect of post rolling stress on phase transformation behavior of microalloyed dual phase steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The slow phase transformation of microalloyed dual phase steel makes the nonuniform stress and temperature fields during the post rolling cooling process have a significant impact on the phase transformation process. Given the relatively slow phase transformation of DP780 steel within the microalloyed dual phase steel series, the influence of stress on the phase transformation behavior of DP780 steel was investigated. To quantify the nonuniform thermal and stress conditions in the steel coil, a thermo-mechanical coupled finite element model of the hot-rolled strip cooling process was established. Based on the simulation data, DP780 steel was chosen as the research material, and Gleeble 3500 thermal simulation equipment was used for experimental validation. The thermal expansion curves were analyzed through regression to establish the dynamic model of DP780 steel phase transformation under stress. Subsequently, metallographic analysis was conducted to determine phase transformation type and grain size of DP780 steel. The results confirmed that the stress promotes the occurrence of semi-diffusion-type bainite transformation. Furthermore, an appropriate level of stress facilitates the growth of bainitic grains, while the increased stress inhibits the growth of ferritic grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.K. Singh, D.K. Chouhan, B. Bhattacharya, S. Biswas, Mater. Sci. Eng. A 870 (2023) 144854.

    Article  CAS  Google Scholar 

  2. J. Zhang, Y. Sun, Z. Ji, H. Luo, F. Liu, J. Mater. Sci. Technol. 75 (2021) 139–153.

    Article  CAS  Google Scholar 

  3. C.P. Scott, F. Fazeli, B. Shalchi Amirkhiz, I. Pushkareva, S.Y.P. Allain, Mater. Sci. Eng. A 703 (2017) 293–303.

  4. W.Q. Sun, S.Y. Yong, T.H. Yuan, C. Liu, S.B. Zhou, R.C. Guo, M.X. Tang, J. Iron Steel Res. Int. (2023) https://doi.org/10.1007/s42243-023-00961-1.

    Article  Google Scholar 

  5. S. Phadke, P. Pauskar, R. Shivpuri, J. Mater. Process. Technol. 150 (2004) 107–115.

    Article  CAS  Google Scholar 

  6. C. Liu, A. He, Y. Qiang, D. Guo, ISIJ Int. 57 (2017) 857–865.

    Article  CAS  Google Scholar 

  7. M. Pietrzyk, J. Kusiak, R. Kuziak, Ł. Madej, D. Szeliga, R. Gołąb, Metall. Mater. Trans. A 45 (2014) 5835–5851.

    Article  CAS  Google Scholar 

  8. J. Ilmola, A. Pohjonen, S. Koskenniska, O. Seppälä, O. Leinonen, J. Jokisaari, J. Pyykkönen, J. Larkiola, Mater. Today Commun. 26 (2021) 101973.

    Article  CAS  Google Scholar 

  9. S. Denis, P. Archambault, C. Aubry, A. Mey, J.C. Louin, A. Simon, J. Phys. IV France 9 (1999) Pr9-323–Pr9-332.

  10. S. Denis, S. Sjöström, A. Simon, Metall. Trans. A 18 (1987) 1203–1212.

    Article  Google Scholar 

  11. E. Polatidis, G.N. Haidemenopoulos, D. Krizan, N. Aravas, T. Panzner, M. Šmíd, I. Papadioti, N. Casati, S. Van Petegem, H. Van Swygenhoven, Mater. Sci. Eng. A 800 (2021) 140321.

    Article  CAS  Google Scholar 

  12. S. Zuo, P. Cheng, D. Wang, B. Du, K. Guan, J. Zhang, Materials 15 (2022) 4477.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Peranio, Y.J. Li, F. Roters, D. Raabe, Mater. Sci. Eng. A 527 (2010) 4161–4168.

    Article  Google Scholar 

  14. X. Li, X. Zhou, Q. Jiang, Z. Liu, JOM 75 (2023) 2225–2234.

    Article  ADS  CAS  Google Scholar 

  15. Y. Qiao, Z. Zheng, H. Yang, J. Long, P. Han, J. Iron Steel Res. Int. 30 (2023) 1463–1476.

    Article  CAS  Google Scholar 

  16. F. Hollander, Iron and Steel Institute 208 (1970) 46–74.

    Google Scholar 

  17. S.Z. Wang, Y.L. Kang, G.M. Zhu, W. Liang, J. Iron Steel Res. Int. 23 (2016) 547–552.

    Article  ADS  Google Scholar 

  18. L.P. Yang, Y. Peng, H.M. Liu, J. Iron Steel Res. Int. 11 (2004) No. 4, 29–33.

    Google Scholar 

  19. M.A. Cavaliere, M.B. Goldschmit, E.N. Dvorkin, Comput. Struct. 79 (2001) 2075–2089.

    Article  Google Scholar 

  20. M. Raviprakash, G.K. Ananda, P.H. Nayak, D. Rahul, Mater. Today 42 (2021) 660–670.

    Google Scholar 

  21. C. Liu, Y. Yuan, A. He, F. Wang, W. Sun, J. Shao, H. Liu, R. Miao, X. Zhou, B. Ma, Metals 13 (2023) 565.

    Article  Google Scholar 

  22. X. Huang, H. Wang, W. Xue, S. Xiang, H. Huang, L. Meng, G. Ma, A. Ullah, G. Zhang, Comput. Mater. Sci. 171 (2020) 109282.

    Article  CAS  Google Scholar 

  23. M.L. Saucedo-Muñoz, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, J.D. Villegas-Cardenas, D.I. Rivas-Lopez, M. Beltran-Zuñiga, C. Ferreira-Palma, J. Moreno-Palmerin, Metals 12 (2022) 1378.

    Article  Google Scholar 

  24. X.Y. Huang, B. Zhang, Q. Tian, H.H. Wu, B. Gan, Z.N. Bi, W.H. Xue, A. Ullah, H. Wang, J. Iron Steel Res. Int. 30 (2023) 1032–1041.

    Article  CAS  Google Scholar 

  25. H. Li, K. Gai, L. He, C. Zhang, H. Cui, M. Li, Mater. Des. 92 (2016) 731–741.

    Article  CAS  Google Scholar 

  26. W. Shen, C. Zhang, L. Zhang, Q. Xu, Y. Cui, Y. Xu, Vacuum 150 (2018) 116–123.

    Article  ADS  CAS  Google Scholar 

  27. S.P. Xi, X.L. Gao, W. Liu, Y.L. Lu, G.Q. Fu, H.C. Tao, Y.C. Zang, J. Iron Steel Res. Int. 29 (2022) 474–483.

    Article  CAS  Google Scholar 

  28. D.W. Hetzner, W. Van Geertruyden, Mater. Charact. 59 (2008) 825–841.

    Article  CAS  Google Scholar 

  29. J. Hua, Z. Yang, F. Wang, X. Xue, N. Wang, L. Huang, J. Mater. Civ. Eng. 34 (2022) 04022193.

    Article  CAS  Google Scholar 

  30. Y. Su, L. Chiu, T. Chuang, C.L. Huang, C. Wu, K.C. Liao, Adv. Mater. Res. 482–484 (2012) 1165–1168.

    Article  Google Scholar 

  31. V.M. Mikhalevich, A.A. Lebedev, Y.V. Dobranyuk, Strength Mater. 43 (2011) 591–603.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52004029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-quan Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Wq., Yong, Sy., Yuan, Th. et al. Effect of post rolling stress on phase transformation behavior of microalloyed dual phase steel. J. Iron Steel Res. Int. 31, 688–699 (2024). https://doi.org/10.1007/s42243-023-01102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01102-4

Keywords

Navigation