Skip to main content
Log in

Mechanism and control of nonuniform phase transformation of microalloyed dual-phase steel during cooling process after hot rolling

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

After cooling in the hot rolling process, the metallographic structure of microalloyed dual-phase steel is nonuniform along the rolling direction, while the thickness fluctuation of microalloyed dual-phase steel with a nonuniform metallographic structure will occur during cold rolling. The mechanism of nonuniform phase transformation of microalloyed dual-phase steels was studied during the cooling process after hot rolling, and the nonuniform phase transformation of microalloyed dual-phase steel was regulated during the cooling process after hot rolling through process optimization. First, the empirical equation of phase transformation temperature was measured by a dilatometer considering thermal expansion. Then, the phase field and temperature field of laminar cooling process were calculated to provide initial boundary conditions for the finite element model. After that, the coupling finite element model of the temperature phase transformation of the strip steel in coiling transportation process was established. The simulation results show that the different thermal contact conditions of the microalloyed dual-phase steel during coil transportation lead to uneven cooling of the coil, which leads to nonuniform transformation of the coil along the rolling direction. In addition, by prolonging the time interval from coiling to unloading, the phenomenon of nonuniform phase transformation of microalloyed dual-phase steel can be effectively controlled. The simulation results are applied to industrial production. The application results show that prolonging the time interval from coiling to unloading can effectively improve the nonuniform phase transformation of microalloyed dual-phase steel in the cooling process after hot rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190 (1995) 55–64.

    Article  Google Scholar 

  2. J.Z. Xue, Z.Z. Zhao, D. Tang, H. Li, H.H. Wu, W.L. Xiong, L. Liang, Y. Huang, J. Iron Steel Res. Int. 28 (2021) 346–359.

    Article  Google Scholar 

  3. C.P. Scott, F. Fazeli, B. Shalchi Amirkhiz, I. Pushkareva, S.Y.P. Allain, Mater. Sci. Eng. A 703 (2017) 293–303.

    Article  CAS  Google Scholar 

  4. X. Wang, Q. Yang, A. He, J. Mater. Process. Technol. 207 (2008) 130–146.

    Article  CAS  Google Scholar 

  5. B. Ning, H.B. Wu, G. Niu, X.P. Yu, J. Iron Steel Res. Int. 29 (2022) 503–511.

    Article  Google Scholar 

  6. L.M. Kaputkina, A.V. Marmulev, E.I. Poliak, G. Herman, Met. Sci. Heat Treat. 54 (2013) 628–632.

    Article  ADS  CAS  Google Scholar 

  7. E.I. Poliak, D. Bhattacharya, Mater. Sci. Forum 783–786 (2014) 3–8.

    Google Scholar 

  8. K. Prinz, A. Steinboeck, M. Muller, A. Ettl, A. Kugi, IEEE Trans. Ind. Applicat. 53 (2017) 2560–2568.

    Article  Google Scholar 

  9. C. Song, J. Cao, L. Wang, J. Xiao, Q. Zhao, Int. J. Adv. Manuf. Technol. 121 (2022) 295–308.

    Article  Google Scholar 

  10. Y.W. Wang, J.G. Cao, C.N. Song, L.L. Wang, L. Sun, D. Xie, Y.L. Lu, Steel Res. Int. 93 (2022) 2100514.

    Article  CAS  Google Scholar 

  11. C. Park, J.W. Kim, B. Kim, J. Lee, IEEE Access 8 (2020) 60890–60905.

    Article  Google Scholar 

  12. A. Milenin, R. Kuziak, M. Lech-Grega, A. Chochorowski, S. Witek, M. Pietrzyk, Arch. Civ. Mech. Eng. 16 (2016) 125–134.

    Article  Google Scholar 

  13. M. Karlberg, ISIJ Int. 56 (2016) 1808–1814.

    Article  CAS  Google Scholar 

  14. S. Witek, A. Milenin, Arch. Civ. Mech. Eng. 18 (2018) 659–668.

    Article  Google Scholar 

  15. S.J. Park, B.H. Hong, S.C. Baik, K.H. Oh, ISIJ Int. 38 (1998) 1262–1269.

    Article  CAS  Google Scholar 

  16. J. Ilmola, A. Pohjonen, O. Seppälä, J. Larkiola, Procedia Manuf. 50 (2020) 418–424.

    Article  Google Scholar 

  17. J. Ilmola, A. Pohjonen, S. Koskenniska, O. Seppälä, O. Leinonen, J. Jokisaari, J. Pyykkönen, J. Larkiola, Mater. Today Commun. 26 (2021) 101973.

    Article  CAS  Google Scholar 

  18. Y. Kaynak, E. Taşcıoğlu, S. Sharif, M.A. Suhaimi, O. Benefan, J. Manuf. Process. 75 (2022) 1144–1152.

    Article  Google Scholar 

  19. M. Avrami, J. Chem. Phys. 8 (1940) 212–224.

    Article  ADS  CAS  Google Scholar 

  20. E. Scheil, Arch. Für Das Eisenhüttenwesen 8 (1935) 565–567.

    Article  CAS  Google Scholar 

  21. A.I. Zaky, A. El-Morsy, T. El-Bitar, J. Mater. Process. Technol. 209 (2009) 1565–1569.

    Article  CAS  Google Scholar 

  22. M. Rahaman, W. Mu, J. Odqvist, P. Hedström, Metall. Mater. Trans. A 50 (2019) 2081–2091.

    Article  CAS  Google Scholar 

  23. N. Peranio, Y.J. Li, F. Roters, D. Raabe, Mater. Sci. Eng. A 527 (2010) 4161–4168.

    Article  Google Scholar 

  24. F. Hollander, Iron and Steel Institute 208 (1970) 46–74.

    Google Scholar 

  25. L.P. Yang, Y. Peng, H.M. Liu, J. Iron Steel Res. Int. 11 (2004) No. 4, 29–33.

    Google Scholar 

  26. E.Y. Liu, W. Peng, N. Cao, S.R. Yu, J. Xu, L.G. Peng, D.H. Zhang, Appl. Mech. Mater. 633–634 (2014) 679–683.

    Article  Google Scholar 

  27. T. Yuan, W. Sun, A. He, L. Chen, C. Liu, S. Yong, Int. J. Adv. Manuf. Technol. 122 (2022) 3867–3880.

    Article  Google Scholar 

  28. S.H. Zhang, L. Deng, L.Z. Che, J. Manuf. Process. 75 (2022) 100–109.

    Article  Google Scholar 

  29. S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, Y. Li, Comput. Math. Appl. 109 (2022) 58–73.

    Article  MathSciNet  Google Scholar 

  30. W.W. Park, D.K. Kim, Y.T. Im, H.C. Kwon, M.S. Chun, Met. Mater. Int. 20 (2014) 719–726.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52004029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-quan Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Wq., Yong, Sy., Yuan, Th. et al. Mechanism and control of nonuniform phase transformation of microalloyed dual-phase steel during cooling process after hot rolling. J. Iron Steel Res. Int. 31, 428–441 (2024). https://doi.org/10.1007/s42243-023-00961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00961-1

Keywords

Navigation