Skip to main content
Log in

Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels. In this work, the austenite dynamic recrystallization (DRX) behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines. The single-pass hot deformation results reveal that the prior austenite grain sizes (PAGSs) for samples with different deformation reductions decrease initially with an increase in deformation temperature. However, once the deformation temperature is beyond a certain threshold, the PAGSs start to increase. It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature, respectively. Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX. In the case of complete DRX, PAGS is predominantly determined by the deformation temperature of the final pass. It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhong, J.W. Ren, W.J. Wang, Q.Y. Liu, and Z.R. Zhou, Investigation between rolling contact fatigue and wear of high speed and heavy haul railway, Tribol. Mater. Surf. Interfaces, 4(2010), No. 4, p. 197.

    Article  Google Scholar 

  2. X. Song, L. Wang, and Y. Liu, A review of the strengthening-toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185.

    Article  Google Scholar 

  3. R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10(2011), No. 11, p. 817.

    Article  CAS  PubMed  Google Scholar 

  4. L. Zhou, W.J. Wang, Y. Hu, et al., Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment, Wear, 456–457(2020), art. No. 203365.

  5. G. Lesiuk, M. Smolnicki, R. Mech, A. Zięty, and C. Fragassa, Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen, Eng. Fail. Anal., 109(2020), art. No. 104354.

  6. R. Masoudi Nejad, Numerical study on rolling contact fatigue in rail steel under the influence of periodic overload, Eng. Fail. Anal., 115(2020), art. No. 104624.

  7. L.B. Godefroid, A.T. Souza, and M.A. Pinto, Fracture toughness, fatigue crack resistance and wear resistance of two railroad steels, J. Mater. Res. Technol., 9(2020), No. 5, p. 9588.

    Article  CAS  Google Scholar 

  8. M. Masoumi, A. Sinatora, and H. Goldenstein, Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail, Eng. Fail. Anal., 96(2019), p. 320.

    Article  CAS  Google Scholar 

  9. V.N. Khiratkar, K. Mishra, P. Srinivasulu, and A. Singh, Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite, Mater. Sci. Eng. A, 754(2019), p. 622.

    Article  CAS  Google Scholar 

  10. S. Behera, R.K. Barik, M.B. Sk, R. Mitra, and D. Chakrabarti, Recipe for improving the impact toughness of high-strength pearlitic steel by controlling the cleavage cracking mechanisms, Mater. Sci. Eng. A, 764(2019), art. No. 138256.

  11. K. Mishra and A. Singh, Effect of interlamellar spacing on fracture toughness of nano-structured pearlite, Mater. Sci. Eng. A, 706(2017), p. 22.

    Article  CAS  Google Scholar 

  12. M.M. Aranda, B. Kim, R. Rementeria, C. Capdevila, and C.G. de Andrés, Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe–C–Mn steel, Metall. Mater. Trans. A, 45(2014), No. 4, p. 1778.

    Article  CAS  Google Scholar 

  13. D.F. Zeng, L.T. Lu, Y.H. Gong, N. Zhang, and Y.B. Gong, Optimization of strength and toughness of railway wheel steel by alloy design, Mater. Des., 92(2016), p. 998.

    Article  CAS  Google Scholar 

  14. S. Liu, F.C. Zhang, Z.N. Yang, M.M. Wang, and C.L. Zheng, Effects of Al and Mn on the formation and properties of nano-structured pearlite in high-carbon steels, Mater. Des., 93(2016), p. 73.

    Article  CAS  Google Scholar 

  15. M.S. Chen, Y.C. Lin, and X.S. Ma, The kinetics of dynamic recrystallization of 42CrMo steel, Mater. Sci. Eng. A, 556(2012), p. 260.

    Article  CAS  Google Scholar 

  16. L.J. Zhao, N. Park, Y.Z. Tian, A. Shibata, and N. Tsuji, Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties, Sci. Rep., 6(2016), art. No. 39127.

  17. C.X. Yue, L.W. Zhang, S.L. Liao, et al., Research on the dynamic recrystallization behavior of GCr15 steel, Mater. Sci. Eng. A, 499(2009), No. 1–2, p. 177.

    Article  Google Scholar 

  18. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation, J. Mater. Sci. Technol., 27(2011), No. 10, p. 913.

    Article  CAS  Google Scholar 

  19. A. Chamanfar, S.M. Chentouf, M. Jahazi, and L.P. Lapierre-Boire, Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel, J. Mater. Res. Technol., 9(2020), No. 6, p. 12102.

    Article  CAS  Google Scholar 

  20. G.R. Ebrahimi, A. Momeni, and H.R. Ezatpour, Modeling the viscoplastic behavior and grain size in a hot worked Nb-bearing high-Mn steel, Mater. Sci. Eng. A, 714(2018), p. 25.

    Article  CAS  Google Scholar 

  21. K. Arun Babu, Y.H. Mozumder, C.N. Athreya, V.S. Sarma, and S. Mandal, Implication of initial grain size on DRX mechanism and grain refinement in super-304H SS in a wide range of strain rates during large-strain hot deformation, Mater. Sci. Eng. A, 832(2022), art. No. 142269.

  22. H.C. Ji, Z.M. Cai, W.C. Pei, X.M. Huang, and Y.H. Lu, DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: Experiment and finite element simulation, J. Mater. Res. Technol., 9(2020), No. 3, p. 4340.

    Article  CAS  Google Scholar 

  23. H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734.

    Article  Google Scholar 

  24. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater., 57(2009), No. 9, p. 2748.

    Article  CAS  Google Scholar 

  25. C. Facusseh, A. Salinas, A. Flores, and G. Altamirano, Study of static recrystallization kinetics and the evolution of austenite grain size by dynamic recrystallization refinement of an eutect-oid steel, Metals, 9(2019), No. 12, art. No. 1289.

  26. P. Springer and U. Prahl, Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without nb under warm forging conditions through processing maps analysis, J. Mater. Process. Technol., 237(2016), p. 216.

    Article  CAS  Google Scholar 

  27. L. Chen, W.Y. Sun, J. Lin, G.Q. Zhao, and G.C. Wang, Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process, Results Phys., 12(2019), p. 784.

    Article  Google Scholar 

  28. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels, Mater. Sci. Eng. A, 636(2015), p. 196.

    Article  CAS  Google Scholar 

  29. M.J. Zhao, L. Huang, C.M. Li, J.J. Li, and P.C. Li, Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel, Mater. Sci. Eng. A, 810(2021), art. No. 141031.

  30. P. Dolzhenko, M. Tikhonova, R. Kaibyshev, and A. Belyakov, Peculiarities of DRX in a highly-alloyed austenitic stainless steel, Materials, 14(2021), No. 14, art. No. 4004.

  31. M. Bambach and S. Seuren, On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes, J. Mater. Process. Technol., 216(2015), p. 95.

    Article  Google Scholar 

  32. A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel, Mater. Sci. Eng. A, 690(2017), p. 158.

    Article  CAS  Google Scholar 

  33. S.F. Rodrigues, C. Aranas, B.H. Sun, F. Siciliano, S. Yue, and J.J. Jonas, Effect of grain size and residual strain on the dynamic transformation of austenite under plate rolling conditions, Steel Res. Int., 89(2018), No. 6, art. No. 1700547.

  34. H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size, Mater. Sci. Eng. A, 569(2013), p. 54.

    Article  CAS  Google Scholar 

  35. R. Mohammadi Ahmadabadi, M. Naderi, J. Aghazadeh Mohandesi, and J.M. Cabrera, Grain growth behaviour of an AISI 422 martensitic stainless steel after hot deformation process, Can. Metall. Q., 57(2018), No. 3, p. 367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52293395 and 52293393) and the Xiongan Science and Technology Innovation Talent Project of MOST, China (Nos. 2022XACX0500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junheng Gao, Shuize Wang or Xinping Mao.

Ethics declarations

Xinping Mao is an advisory board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors have no conflict of interest to declare.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Li, S., Wang, K. et al. Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel. Int J Miner Metall Mater (2024). https://doi.org/10.1007/s12613-023-2805-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12613-023-2805-4

Keywords

Navigation