Skip to main content
Log in

Desulfurization of rejected electrolytic manganese metal by electroslag remelting furnace with a water-cooled electrode

  • ORIGINAL PAPER
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Remelting rejected electrolytic manganese metal (EMM) scrap was investigated by electroslag remelting (ESR) process through industrial experiment. The results indicated that the ANF-6 slag (70 wt.% CaF2 + 30 wt.% Al2O3) and deoxidizer could promote the desulfurization of ESR manganese in an air atmosphere. Under an air atmosphere, the sulfur in the ingot decreased to 0.0534 wt.% with a desulfurization ratio of ESR manganese of 53.2% by using ANF-6 slag and water-cooled copper electrode electroslag remelting rejected EMM scrap, suggesting its efficient removal. The electroslag ingots exhibited uneven chemical composition in an air atmosphere and cooling condition of the ESR process. The metal manganese could be oxidized by electroslag remelting of rejected EMM scrap in an air atmosphere with MnO content in the final slag of 21.9 wt.%. Besides, the activity of MnO in slag increased with increasing remelting temperature, resulting in a reduction in the slag–manganese sulfur partition ratio and desulfurization ratio. Moreover, with the accumulation of sulfur in slag and the oxidation of metallic manganese liquid, the slag showed a lower cleanliness and more oxidation, leading to an increase in sulfur and oxygen content in the electroslag ingot with the increase in ingot height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.X. Yu, X.H. Wang, J. Zhang, W.J. Wang, J. Iron Steel Res. Int. 22 (2015) 573–581.

    Article  Google Scholar 

  2. Y. Nakai, N. Kikuchi, Y. Miki, Y. Kishimoto, T. Isawa, T. Kawashima, ISIJ Int. 53 (2013) 1020–1027.

    Article  Google Scholar 

  3. K.H. Zhang, Y.L. Zhang, T. Wu, J. Iron Steel Res. Int. 26 (2019) 1041–1051.

    Article  Google Scholar 

  4. A. Mekhtiyev, A. Akhmetov, V. Yudakova, F. Bulatbayev, Metalurgija 55 (2016) 47–50.

    Google Scholar 

  5. Q. Wang, F. Wang, G.Q. Li, Y.M. Gao, B.K. Li, Int. J. Heat Mass Transfer 113 (2017) 1021–1030.

    Article  Google Scholar 

  6. Q. Wang, Y. Liu, F. Wang, G.Q. Li, B.K. Li, W.W. Qiao, Metall. Mater. Trans. B 48 (2017) 2649–2663.

    Article  Google Scholar 

  7. J. Guo, S.S. Cheng, Z.J. Cheng, J. Iron Steel Res. Int. 21 (2014) 166–173.

    Article  Google Scholar 

  8. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 392–401.

    Article  Google Scholar 

  9. Q. Wang, R. Lu, F. Wang, Z. He, G.Q. Li, Metall. Mater. Trans. B 52 (2021) 665–675.

    Article  Google Scholar 

  10. V.V.S. Prasad, A.S. Rao, U. Prakash, V.R. Rao, P.K. Rao, K.M. Gupt, ISIJ Int. 36 (1996) 1459–1564.

    Article  Google Scholar 

  11. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, H. Poisson, Metall. Mater. Trans. B 40 (2009) 271–280.

    Article  Google Scholar 

  12. P. Wei, O.E. Hileman Jr., M.R. Bateni, X.H. Deng, A. Petric, Surf. Coat. Technol. 201 (2007) 7739–7745.

    Article  Google Scholar 

  13. F.N.H. Schrama, E.M. Beunder, B. Van den Berg, Y.X. Yang, R. Boom, Ironmak. Steelmak. 44 (2017) 333–343.

    Article  Google Scholar 

  14. W. Cao, L. Muhmood, S. Seetharaman, Metall. Mater. Trans. B 43 (2012) 363–369.

    Article  Google Scholar 

  15. M. Kato, K. Hasegawa, S. Nomura, M. Inouye, ISIJ Int. 23 (1983) 618–627.

    Article  Google Scholar 

  16. Z.B. Li, W.H. Zhou, Y.D. Li, Iron and Steel 15 (1980) No. 1, 20–26.

    Google Scholar 

  17. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh, M. Hino, ISIJ Int. 44 (2004) 1810–1816.

    Article  Google Scholar 

  18. S.H. Chen, X.H. Wang, X.F. He, W.J. Wang, M. Jiang, J. Iron Steel Res. Int. 20 (2013) No. 1, 26–33.

    Article  Google Scholar 

  19. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 1391–1399.

    Article  Google Scholar 

  20. C.B. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2017) 146–161.

    Article  Google Scholar 

  21. S.B. Li, Q. Wang, Ferro-alloys 38 (2007) No. 2, 23–27.

    Google Scholar 

  22. X.J. Wang, G.Q. Li, Y. Liu, Y.L. Cao, F. Wang, Q. Wang, Metals 9 (2019) 1247.

    Article  Google Scholar 

  23. S.X. Yang, H.B. Li, H. Feng, Z.H. Jiang, M. Chen, T. He, Metall. Mater. Trans. B 52 (2021) 1294–1308.

    Article  Google Scholar 

  24. Y.V. Latash, V.A. Yakovenko, I.Y. Lyuty, E.V. Butski, S.V. Bogdanov, V.P. Kubikov, in: B.I. Medovar, G.A. Boyko (Eds.), Electroslag technology, Springer-Verlag, New York, USA, 1990, 62–67.

    Google Scholar 

  25. G.H. Zhang, K.C. Chou, K. Mills, ISIJ Int. 52 (2012) 355–362.

    Article  Google Scholar 

  26. G.H. Zhang, K.C. Chou, K. Mills, Metall. Mater. Trans. B 45 (2014) 698–706.

    Article  Google Scholar 

  27. B.T. Poe, P.F. McMillan, B. Cote, D. Massiot, J.P. Coutures, J. Am. Ceram. Soc. 77 (1994) 1832–1838.

    Article  Google Scholar 

  28. B.O. Mysen, Earth Sci. Rev. 27 (1990) 281–365.

    Article  Google Scholar 

  29. K. Mills, M. Guo, ISIJ Int. 54 (2014) 2000–2007.

    Article  Google Scholar 

  30. Y.U. Han, D.J. Min, J. Am. Ceram. Soc. 98 (2015) 2438–2444.

    Article  Google Scholar 

  31. Y. Miyabayashi, M. Nakamoto, T. Tanaka, T. Yamamoto, ISIJ Int. 49 (2009) 343–348.

    Article  Google Scholar 

  32. M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010.

    Google Scholar 

  33. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1180.

    Article  Google Scholar 

  34. J.X. Zhao, Y.M. Chen, X.M. Li, Y.R. Cui, X.T. Lu, J. Iron Steel Res. Int. 18 (2011) No. 10, 24–28.

    Article  Google Scholar 

  35. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang, Metall. Mater. Trans. B 42 (2011) 951–977.

    Article  Google Scholar 

  36. X.M. Yang, C.B. Shi, M. Zhang, J. Zhang, Steel Res. Int. 83 (2012) 244–258.

    Article  Google Scholar 

  37. D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, W. Gong, Ironmak. Steelmak. 43 (2016) 517–525.

    Article  Google Scholar 

  38. J. Zhang, G.G. Cheng, L.J. Wang, R. Zhu, H.J. Guo, Computational thermodynamics of metallurgical melts and solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  39. J.J. Yang, Study of thermodynamic characters and physical parameters of high-Al2O3 refining slags used in steelmaking, University of Science and Technology Beijing, Beijing, China, 2015.

    Google Scholar 

  40. K.H. Zhang, Y.L. Zhang, F.S. Li, T. Wu, J. Iron Steel Res. 30 (2018) 265–272.

    Google Scholar 

  41. L.Z. Chang, X.F. Shi, J.Q. Cong, Ironmak. Steelmak. 41 (2014) 182–186.

    Article  Google Scholar 

  42. R. Lu, G.Q. Li, Y.M. Gao, C.B. Shi, Q. Wang, Metall. Mater. Trans. B 52 (2021) 1626–1639.

    Article  Google Scholar 

  43. X.H. Huang, Principles of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 2013.

    Google Scholar 

  44. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, J.Z. Li, Mater. Des. 84 (2015) 291–299.

    Article  Google Scholar 

  45. Z.H. Jiang, Y.W. Dong, X. Geng, F.B. Liu, Electroslag metallurgy, Science Press, Beijing, China, 2015.

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 51804227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wang or Hai-chuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Yu, Rr., Li, Gq. et al. Desulfurization of rejected electrolytic manganese metal by electroslag remelting furnace with a water-cooled electrode. J. Iron Steel Res. Int. 30, 1411–1425 (2023). https://doi.org/10.1007/s42243-023-01005-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01005-4

Keywords

Navigation