Skip to main content
Log in

Kinetics of hot metal desulfurization using CaO–SiO2–Al2O3–Na2O–TiO2 slag

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Kinetics of hot metal desulfurization were studied using CaO–SiO2–Al2O3–Na2O–TiO2 slag in the range of 1400–1500 °C on a laboratory scale. The results of kinetic experiments indicate that the desulfurization rate increases as the temperature, Al2O3 content, Na2O content, and TiO2 content increase and basicity increases from 1.01 to 1.75, but decreases when basicity increases from 1.75 to 2.02. The melting effect of slag is promoted as the temperature, Na2O content, and TiO2 content increase and Al2O3 content increases from 12.13 to 17.17 mass%, but worsened as basicity increases and Al2O3 content increases from 17.17 to 22.27 mass%. A kinetic model of hot metal desulfurization has been developed to calculate the mass transfer coefficient and the mass transfer resistance of sulfur in slag. The mass transfer coefficient of sulfur increases as the temperature, Al2O3 content, Na2O content, and TiO2 content increase and basicity decreases. Total mass transfer coefficients of sulfur were in the range of (5.02–23.78) × 10−7 m s−1. The activation energy was estimated to be 464.06 kJ mol−1 at the temperature from 1400 to 1450 °C and 176.35 kJ mol−1 at the temperature from 1450 to 1500 °C. The sulfur distribution at the slag–metal interface was observed using a mineral liberation analyzer. The result shows that the mass transfer of sulfur in slag is the controlling step at high temperature during the desulfurization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.J. Pak, R.J. Fruehan, Metall. Trans. B 22 (1991) 39–46.

    Article  Google Scholar 

  2. Y.L. Zhang, F.S. Li, R.M. Wang, D.D. Tian, Steel Res. Int. 88 (2017) 1600140.

    Article  Google Scholar 

  3. J.H. Park, D.J. Min, H.S. Song, Metall. Mater. Trans. B 35 (2004) 269–275.

    Article  Google Scholar 

  4. J.F. Xu, L.J. Su, D. Chen, J.Y. Zhang, Y. Chen, J. Iron Steel Res. Int. 22 (2015) 1091–1097.

    Article  Google Scholar 

  5. X.L. Tang, Z.T. Zhang, M. Guo, M. Zhang, X.D. Wang, J. Iron Steel Res. Int. 18 (2011) No. 2, 1–17.

    Article  Google Scholar 

  6. K. Yajima, H. Matsuuran, F. Tsukihashi, ISIJ Int. 50 (2010) 191–194.

    Article  Google Scholar 

  7. H. Park, J.Y. Park, G.H. Kim, I. Sohn, Steel Res. Int. 83 (2012) 150–156.

    Article  Google Scholar 

  8. R.Z. Xu, J.L. Zhang, H.S. Zhang, C.J. Liu, X.Y. Fan, Z.Y. Wang, Iron and Steel 52 (2017) No. 9, 104–109.

    Google Scholar 

  9. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, D.J. Min, ISIJ Int. 52 (2012) 158–160.

    Article  Google Scholar 

  10. L.L. Yang, H.M. Wang, X. Zhu, G.R. Li, J. Iron Steel Res. Int. 21 (2014) 745–748.

    Article  Google Scholar 

  11. J.Y. Choi, D.J. Kim, H.G. Lee, ISIJ Int. 41 (2001) 216–224.

    Article  Google Scholar 

  12. Z.F. Tong, J.L. Qiao, X.Y. Jiang, ISIJ Int. 57 (2017) 245–253.

    Article  Google Scholar 

  13. Z.S. Ren, X.J. Hu, K.C. Chou, J. Iron Steel Res. Int. 20 (2013) No. 9, 21–25.

    Article  Google Scholar 

  14. X. Tang, C.S. Xu, ISIJ Int. 35 (1995) 367–371.

    Article  Google Scholar 

  15. J.J. Pak, K. Ito, F.J. Fruehan, ISIJ Int. 29 (1989) 318–323.

    Article  Google Scholar 

  16. X.H. Huang, Iron and steel metallurgical principles, Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  17. J.F. Xu, F.X. Huang, X.H. Wang, J. Iron Steel Res. Int. 23 (2016) 784–791.

    Article  Google Scholar 

  18. Q.Y. Han, Kinetics of metallurgical process, Metallurgical Industry Press, Beijing, 1983.

    Google Scholar 

  19. J.K. Jung, J.J. Pak, J. Korean Inst. Met. Mater. 38 (2000) 585–590.

    Google Scholar 

  20. S. Seetharaman, Fundamentals of metallurgy, Woodhead Publishing Limited, Cambridge, 2005.

    Book  Google Scholar 

  21. B. Deo, R. Boom, Fundamentals of steelmaking metallurgy, Prentice Hall, New York, 1993.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Key R&D Program of China (No. 2017YFC0210301) and the National Natural Science Foundation of China (No. 51474021) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Kh., Zhang, Yl. & Wu, T. Kinetics of hot metal desulfurization using CaO–SiO2–Al2O3–Na2O–TiO2 slag. J. Iron Steel Res. Int. 26, 1041–1051 (2019). https://doi.org/10.1007/s42243-018-0171-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0171-7

Keywords

Navigation