Skip to main content
Log in

Effects of CaO Content and Magnesium Additive in Electroslag on Desulfurization of Rejected Electrolytic Manganese Metal Scrap

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study conducted high-temperature experiments and elaborated a mathematical model to study the effect of electroslag content and Mg additive on the sulfur and oxygen contents in manganese metal (MM) and MnO in slag during the remelting process. The developed mass transfer model simulated the mechanism of the slag-manganese reaction. The high-temperature experiment was realized in a MoSi2 electrical resistance furnace filled with fluid argon atmosphere at 1773 K (1500 °C) using four different types of electroslag with CaO contents ranging from 0 to 20 pct. A high-purity Mg additive was added to the molten pool as a deoxidizer. The developed mathematical model simulates the mass transfer of sulfur, oxygen, and MnO based on the two-film theory and penetration theory during the high-temperature remelting process. The results predicted by the mathematical model comply with the experimental data, indicating that the desulfurization ratio, deoxidization ratio, and MnO reduction ratio of rejected electrolytic manganese metal (EMM) scrap increase with CaO content in the electroslag. High CaO content in the slag improves the desulfurization rate by increasing the sulfur partition coefficient and overall mass transfer coefficient. The promotion of desulfurization and deoxidization of manganese metal by the Mg additive reduces the MnO content in the rejected EMM scrap. High CaO content in the slag can also promote the desulfurization reaction by increasing the deoxidation rate of manganese metal. With raising CaO content of electroslag, the activity of MnO in molten slag increases, in contrast to Al2O3 and SiO2, increasing the reduction ratio of MnO. Therefore, high CaO content in the slag increases the desulfurization and deoxidation ratios and promotes the recovery rate of rejected EMM scrap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Metall. Mater. Trans. B., 2016, vol. 47B(2), pp. 1465–74.

    Article  Google Scholar 

  2. R. Takata, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47(10), pp. 1379–86.

    Article  CAS  Google Scholar 

  3. D. Hou, Z.H. Jiang, T.P. Qu, D.Y. Wang, F.B. Liu, and H.B. Li: J. Iron Steel Res. Int., 2019, vol. 26(1), pp. 20-31.

  4. Z.Z. Tan and G.G. Mei: Manganese Metallurgy, Central South University Press, Changsha, 2004. ((In Chinese)).

    Google Scholar 

  5. W.C. Yang: The Study on Manganese Electrolytic Deposition Process and New Anode, Central South University, 2013 (In Chinese).

  6. M. Tang: Study on Compound Additive of Electrolytic Manganese, Chongqing University, 2010 (In Chinese).

  7. J.A.M. De Araujo, M.M.R. De Castro, and V.F.C. Lins: Hydrometallurgy., 2006, vol. 84(3–4), pp. 204–10.

    Article  Google Scholar 

  8. Q. Wang, Y. Liu, R. Lu, F. Wang, Z. He, and G.Q. Li: Metall. Metall. Mater. Trans. B., 2021, vol. 52(1), pp. 107–22.

    Article  Google Scholar 

  9. Q. Wang, R. Lu, F. Wang, Z. He, and G.Q. Li: Metall. Metall. Mater. Trans. B., 2021, vol. 52(2), pp. 1–11.

    Google Scholar 

  10. R. Lu, G.Q. Li, Y.L. Cao, C.B. Shi, and Q. Wang: Metall. Metall. Mater. Trans. B., 2021, vol. 52(3), pp. 1626–39.

    Article  Google Scholar 

  11. V.V.S. Prasad, A.S. Rao, U. Prakash, V.R. Rao, P.K. Rao, and K.M. Gupt: ISIJ Int., 1996, vol. 36(12), pp. 1459–64.

    Article  CAS  Google Scholar 

  12. V. Weber, A. Jardy, B. Dussoubs, S. Ryberon, S. Hans, and H. Poisson: Metall. Metall. Mater. Trans. B., 2009, vol. 40(3), pp. 271–80.

    Article  CAS  Google Scholar 

  13. Q. Wang, F. Wang, G.Q. Li, Y.M. Gao, and B.K. Li: Int. J. Heat Mass Transf., 2017, vol. 113, pp. 1021–30.

    Article  CAS  Google Scholar 

  14. Q. Wang, Y. Liu, F. Wang, G.Q. Li, B.K. Li, and W.W. Qiao: Metall. Metall. Mater. Trans. B., 2017, vol. 48(5), pp. 2649–63.

    Article  Google Scholar 

  15. Y.W. Dong, Z.H. Jiang, J.X. Fan, Y.L. Cao, D. Hou, and H.B. Cao: Metall. Metall. Mater. Trans. B., 2016, vol. 47(2), pp. 1475–88.

    Article  Google Scholar 

  16. Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou: Metall. Metall. Mater. Trans. B., 2014, vol. 45(4), pp. 1315–24.

    Article  Google Scholar 

  17. B. Hernandez-Morales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26(6), pp. 23–38.

    Article  Google Scholar 

  18. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng: Int. J. Miner. Metall. Mater., 2021, vol. 28(1), pp. 18–29.

    Article  CAS  Google Scholar 

  19. F.N.H. Schrama, E.M. Beunder, B.V.D. Berg, Y.X. Yang, and R. Boom: Ironmak. Seelmak., 2017, vol. 44(5), pp. 333–43.

    Article  CAS  Google Scholar 

  20. W. Cao, L. Muhmood, and S. Seetharaman: Metall. Metall. Mater. Trans. B., 2012, vol. 43(2), pp. 363–9.

    Article  Google Scholar 

  21. J.Y. Choi, D. Jung, and H.G. Lee: ISIJ Int., 2001, vol. 41(3), pp. 216–24.

    Article  CAS  Google Scholar 

  22. Z.F. Tong, J.L. Qiao, and X.Y. Jiang: ISIJ Int., 2017, vol. 57(2), pp. 245–53.

    Article  CAS  Google Scholar 

  23. J.B. Yao, W.G. Liu, J.T. Ju, X.D. Xing, and J.L. An: J. Iron Steel Res., 2019, vol. 31(3), pp. 280-85 (In Chinese).

  24. X.H. Huang: Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, 2013 (In Chinese).

  25. C.J.B. Fincham and F.D. Richardson: Proc. Math. Phys. Eng. Sci., 1954, vol. 223(1152), pp. 40–62.

    CAS  Google Scholar 

  26. C. Allertz, M. Selleby, and D. Sichen: Metall. Metall. Mater. Trans. B., 2016, vol. 47(5), pp. 3039–45.

    Article  Google Scholar 

  27. H.X. Yu, X.H. Wang, M. Wang, and W.J. Wang: Int. J. Miner. Metall. Mater., 2014, vol. 21(12), pp. 1160–6.

    Article  CAS  Google Scholar 

  28. A.N. Conejo, F.R. Lara, M. Macias-Hernández, and R.D. Morales: Steel Res. Int., 2007, vol. 78(2), pp. 141–50.

    Article  CAS  Google Scholar 

  29. Z.B. Li: Theory and Practice of Electroslag Metallurgy, Metallurgical Industry Press, 2010 (In Chinese).

  30. T.S. Jeong and J.H. Park: Metall. Metall. Mater. Trans. B., 2020, vol. 51(5), pp. 2309–20.

    Article  Google Scholar 

  31. J.F. Xu, F.X. Huang, and X.H. Wang: J. Iron Steel Res. Int., 2016, vol. 23(8), pp. 784-91.

  32. D.G. Kim, M.A.V. Ende, C.V. Hoek, C. Liebske, S.V.D. Laan, and I.H. Jung: Metall. Metall. Mater. Trans. B., 2012, vol. 43(6), pp. 1315–25.

    Article  Google Scholar 

  33. D.G. Kim, C.V. Hoek, C. Liebske, S.V.D. Laan, P. Hudon, and I.H. Jung: ISIJ Int., 2012, vol. 52(11), pp. 1945–50.

    Article  CAS  Google Scholar 

  34. K. Takahashi, K. Utagawa, H. Shibata, S.Y. Kitamura, N. Kikuchi, and Y. Kishimoto: ISIJ Int., 2012, vol. 52(1), pp. 10–7.

    Article  CAS  Google Scholar 

  35. B.Y. Shiro, M. Hobo, T. Kaji, I. Takeshi, and H. Mitsutaka: ISIJ Int., 2004, vol. 44(11), pp. 1810–6.

    Article  Google Scholar 

  36. S.H. Chen, X.H. Wang, X.F. He, W.J. Wang, and M. Jiang: J. Iron Steel Res. Int., 2013, vol. 20(1), pp. 26-33.

  37. D. Hou, Z.H. Jiang, Y.W. Dong, and W.J. Zhou: J. Northeast. Univ., 2016, vol. 37(005), pp. 668–72.

    CAS  Google Scholar 

  38. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Metall. Mater. Trans. B., 2013, vol. 44(5), pp. 1086–94.

    Article  Google Scholar 

  39. T.S. Zhang, Y. Min, C.J. Liu, and M.F. Jiang: ISIJ Int., 2015, vol. 55(8), pp. 1541–8.

    Article  CAS  Google Scholar 

  40. T.S. Zhang, C.J. Liu, and M.F. Jiang: Metall. Metall. Mater. Trans. B., 2016, vol. 47(4), pp. 2253–62.

    Article  Google Scholar 

  41. H. Itoh, M. Hino, and S. Banya: Tetsu to Hagane., 1997, vol. 83(10), pp. 623–8.

    Article  CAS  Google Scholar 

  42. W.G. Seo, W.H. Han, J.S. Kim, and J.J Pak: ISIJ Int., 2003, vol. 43(2), pp. 201–08.

  43. J.X. Chen: Steelmaking Sommonly Used Chart Data Manual, Metallurgical Industry Press, 1984 (In Chinese).

  44. T.S. Zhang, D.Y. Wang, and M.F. Jiang: J. Iron Steel Res. Int., 2014, vol. 21(12), pp. 1073-80.

  45. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Metall. Mater. Trans. B., 2001, vol. 32(1), pp. 79–85.

    Article  CAS  Google Scholar 

  46. S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, and J. Guo: Metall. Metall. Mater. Trans. B., 2020, vol. 51(1), pp. 353–64.

    Article  Google Scholar 

  47. D. Hou, Z.H. Jiang, Y.W. Dong, L. Yang, G. Wei, and F.B. Fu: Metall. Metall. Mater. Trans. B., 2017, vol. 48(3), pp. 1885–97.

    Article  Google Scholar 

  48. X.C. Huang, B.K. Li, and Z.Q. Liu: Int. J. Heat Mass Transf., 2018, vol. 120, pp. 458–70.

    Article  CAS  Google Scholar 

  49. S. Chatterjee: Critical Evaluation and Thermodynamic Modeling of Phase Equilibria in the Fe-Ca-Mg-Mn-Al-Si-O System, McGill University Libraries, 2013.

  50. P. Wu, G. Eriksson, and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76(8), pp. 2065–75.

    Article  CAS  Google Scholar 

  51. L.N. Belyanchikov: Steel Transl., 2013, vol. 43(11), pp. 698–709.

    Article  Google Scholar 

  52. G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40(2), pp. 121–8.

    Article  CAS  Google Scholar 

  53. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32(1), pp. 1–120.

    Article  CAS  Google Scholar 

  54. D. Hou, D.Y. Wang, T.P. Qu, J. Tian, and H.H. Wang: Metall. Metall. Mater. Trans. B., 2019, vol. 50(6), pp. 3088–102.

    Article  Google Scholar 

  55. C.L. Zhao: Simulation Study of CAS-OB Powder Injection Refining Process, Northeast University, 2006 (In Chinese).

  56. A.W. Cramb and I. Jimbo: Steel Res. Int., 1989, vol. 60(3–4), pp. 157–65.

    Article  CAS  Google Scholar 

  57. Q. Wang, Y. Liu, Z. He, B.K. Li, and G.Q. Li: ISIJ Int., 2017, ISIJINT-2016-566.

  58. Z.H. Jiang, Y.W. Dong, X. Geng, and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, 2015. ((In Chinese)).

    Google Scholar 

  59. D. Hou, D.Y. Wang, Z.H. Jiang, T.P. Qu, and H.H. Wang: J. Sustain. Metall., 2020, vol. 6(3), pp. 463–77.

    Article  Google Scholar 

  60. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, and J.Z. Li: Mater. Des., 2015, vol. 84, pp. 291–9.

    Article  CAS  Google Scholar 

  61. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Metall. Mater. Trans. B., 2011, vol. 42(6), pp. 1150–80.

    Article  Google Scholar 

  62. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Metall. Mater. Trans. B., 2011, vol. 42(4), pp. 738–70.

    Article  Google Scholar 

  63. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Metall. Mater. Trans. B., 2011, vol. 42(5), pp. 951–77.

    Article  Google Scholar 

  64. X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83(3), pp. 244–58.

    Article  CAS  Google Scholar 

  65. D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Iron Steel., 2016, vol. 43(7), pp. 517–25.

    Article  CAS  Google Scholar 

  66. J. Zhang, G.G. Cheng, L.J. Wang, R. Zhu, and H.J. Guo: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, 2007 (In Chinese).

  67. J.J. Yang: Study of Thermodynamic Characters and Physical Parameters of High-Al2O3 Refining Slags Used in Steelmaking, University of Science and Technology Beijing, 2015 (In Chinese).

  68. M.V. Smoluchowski: Ann Phys., 1906, vol. 326(14), pp. 756–80.

    Article  Google Scholar 

  69. G. Tarjus and D. Kivelson: J. Chem. Phys., 1995, vol. 103(8), pp. 3071–3.

    Article  CAS  Google Scholar 

  70. Y. Liu, Z. Zhang, G.Q. Li, Y. Wang, D.M. Xu, and B.K. Li: Vacuum., 2018, vol. 158, pp. 6–13.

    Article  CAS  Google Scholar 

  71. G.H. Zhang, K.C. Chou, and K. Mills: ISIJ Int., 2012, vol. 52(3), pp. 355–62.

    Article  CAS  Google Scholar 

  72. G.H. Zhang, K.C. Chou, and K. Mills: Metall. Metall. Mater. Trans. B., 2014, vol. 45(2), pp. 698–706.

    Article  Google Scholar 

  73. S.B. Li and Q. Wang: Fer. Alloys, 2007, vol. (02), pp. 23-27 (In Chinese).

Download references

Acknowledgment

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 51804227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 27, 2021; accepted September 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Li, G., Li, J. et al. Effects of CaO Content and Magnesium Additive in Electroslag on Desulfurization of Rejected Electrolytic Manganese Metal Scrap. Metall Mater Trans B 52, 4179–4196 (2021). https://doi.org/10.1007/s11663-021-02337-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02337-w

Navigation