Skip to main content
Log in

Review on monitoring and prevention technologies of splashing induced by inappropriate slag foaming in BOF

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Basic oxygen steelmaking (BOS) is the most frequently used method to produce molten steel, which is being developed to meet the requirements of being safe, efficient, clean, and intelligent. During the BOS process, splashing events cause undesirable consequences, such as casualties, low efficiency, environmental pollution, and uncontrollable operation. The causes of three types of splashing (eruptive, foaming, and metallic splashing) were unraveled and it is concluded that inappropriate foaming is the root cause of splashing. A variety of monitoring techniques for splashing have been developed to measure real-time slag foaming in a basic oxygen furnace (BOF). The audiometry technique with flexible operation and high accuracy was comprehensively introduced with a practical application. Based on the formation mechanisms, the countermeasures for the three types of splashing were proposed to regulate slag foaming in a BOF by integrating diverse measures in terms of raw materials, slag forming, blowing pattern, and the use of splashing regulating agents. Future work should emphasise an automatic action for these prevention measures in response to the splashing risk from the monitoring technology, promoting the progress of intelligent steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.S. Li, J.C. Li, S. Spooner, S. Sridhar, BOS slag: formation, reaction, and energy and materials recovery, in: The 11th International Conference on Molten Slags, Fluxes and Salts, Seoul, Korea, 2020.

  2. C. Cicutti, M. Martín, R. Donayo, A. Gómez, Rev. Metall. 107 (2010) 309–317.

    Article  Google Scholar 

  3. K.L. Xu, B.Z. Chen, J.B. Wang, F.C. Wang, Ind. Saf. Dust Control (1996) No. 4, 4–6.

  4. B.И.·Бaптизмaнcкий, Z.M. Cao, M. Wang, Theory of oxygen converter steelmaking process, Shanghai Science and Technology Press, Shanghai, China, 1979.

  5. H.T. Zhan, in: 2015 Proc. of the annual meeting of metallurgical safety and health, The Chinese Society for Metals, Beijing, China, 2015, pp. 105–109.

  6. H.W. Ren, D.X. Zhou, Tianjin Metall. (2017) No. 3, 11–13.

    Google Scholar 

  7. S.K. Gupta, A. Prasad, A. Chatterjee, M. Kumar, S. Ghosh, R. Datta, Steel Times Int. 40 (2016) 27–29, 32.

    Google Scholar 

  8. X.H. Wang, Iron and steel metallurgy steelmaking, Higher Education Press, Beijing, China, 2007.

    Google Scholar 

  9. M. Brämming, Avoiding slopping in top-blown BOS vessels, Luleå University of Technology, Luleo, Sweden, 2010.

    Google Scholar 

  10. M.Y. Zhu, Modern metallurgical technology, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  11. N. Dogan, G.A. Brooks, M.A. Rhamdhani, ISIJ Int. 51 (2011) 1102–1109.

    Article  Google Scholar 

  12. K. Koch, J. Falkus, R. Bruckhaus, Steel Res. 64 (1993) 15–21.

    Article  Google Scholar 

  13. D. Dering, C. Swartz, N. Dogan, Processes 8 (2020) 483.

    Article  Google Scholar 

  14. C. Cicutti, M. Valdez, T. Perez, R. Donayo, J. Petroni, Lat. Am. Appl. Res. 32 (2002) 237–240.

    Google Scholar 

  15. M. Brämming, An operational view on foaming and slopping control in top-blown BOS vessels, Luleå University of Technology, Luleo, Sweden, 2016.

    Google Scholar 

  16. M. Shakirov, A. Boutchenkov, G. Galperine, B. Schrader, Iron Steel Technol. 1 (2004) 38–44.

    Google Scholar 

  17. Z.Y. Huang, G.F. Yan, D.W. Zuo, W. Tang, Met. Mater. Metall. Eng. 36 (2008) 12–15, 32.

    Google Scholar 

  18. H. Wang, Sci. Technol. Innovation 17 (2014) 2–3.

    Google Scholar 

  19. R. Wang, B. Zhang, C. Liu, M. Jiang, Exp. Therm. Fluid Sci. 113 (2020) 110041.

    Article  Google Scholar 

  20. K. Lu, J.Z. Li, Steelmaking 25 (2009) No. 6, 20–21.

    Google Scholar 

  21. R. Wang, B. Zhang, C. Hu, C. Liu, M. Jiang, Steel Res. Int. 93 (2022) 2100318.

    Article  Google Scholar 

  22. C.Q. Guo, Q. Liu, China Metall. 25 (2015) No. 3, 45–47.

    Google Scholar 

  23. J.S. Ye, W.M. Zheng, J.W. Jin, Z.Y. Huang, G.F. Yan, G.Z. Guang, W.Z. Cai, J.J. Xia, X.B Sha, J. Anhui Univ. Technol. 26 (2009) 208–211, 216.

  24. S.J. Wan, Ent. Sci. Technol. Dev. 12 (2009) 46–47, 54.

    Google Scholar 

  25. S.Z. Wang, W.S. Li, Y. Lu, Henan Metall. 17 (2009) No. 4, 32–34.

    Google Scholar 

  26. K.L. Xu, B.Z. Chen, Ind. Saf. Dust Control (1998) No. 4, 39–40.

    Google Scholar 

  27. X.H. Wang, G.S. Zhu, H.B. Li, Y.C. Lu, China Metall. 23 (2013) No. 4, 40–46.

    Google Scholar 

  28. A. Dahlin, A. Tilliander, J. Eriksson, P.G. Jönsson, Ironmak. Steelmak. 39 (2012) 378–385.

    Article  Google Scholar 

  29. A. Dahlin, J. Eriksson, A. Tilliander, P.G. Jönsson, Ironmak. Steelmak. 39 (2012) 318–326.

    Article  Google Scholar 

  30. J. Ruuska, A. Sorsa, S. Ollila, K. eiviskä, IFAC-PapersOnLine 48 (2015) 171–176.

    Article  Google Scholar 

  31. Y.C. Dong, H.C. Wang, Physical chemistry in metallurgy, Hefei Industry Press, Hefei, China, 2011.

    Google Scholar 

  32. M. Brämming, F. Engström, C. Samuelsson, B. Björkman, Steel Res. Int. 90 (2019) 1800269.

    Article  Google Scholar 

  33. R. Wang, B. Zhang, C. Liu, M. Jiang, Metall. Mater. Trans. B 51 (2020) 1941–1946.

    Article  Google Scholar 

  34. J. Wang, J.Q. Zeng, L.B. Yang, China Metall. 26 (2016) No. 9, 1–5.

    Google Scholar 

  35. B. Zhang, R. Wang, C. Hu, C. Liu, M. Jiang, ISIJ Int. 61 (2021) 1348–1356.

    Article  Google Scholar 

  36. R. Wang, B. Zhang, C. Hu, C. Liu, M. Jiang, Metall. Mater. Trans. B 52 (2021) 1805–1817.

    Article  Google Scholar 

  37. K. Ito, R.J. Fruehan, Metall. Trans. B 20 (1989) 509–514.

    Article  Google Scholar 

  38. R. Donayo, A. Data, A. Gómez, W. Balante, J. Pérez, Rev. Metall. 107 (2010) 319–328.

    Article  Google Scholar 

  39. H.S. Kim, D.J. Min, J.H. Park, ISIJ Int. 41 (2001) 317–324.

    Article  Google Scholar 

  40. M.S. Millman, A. Overbosch, A. Kapilashrami, D. Malmberg, M. Brämming, Ironmak. Steelmak. 38 (2011) 499–509.

    Article  Google Scholar 

  41. J. Xiang, J. Wang, Q. Li, C. Shan, G. Qiu, W. Yu, X. Lv, Can. Metall. Q. 59 (2020) 151–158.

    Article  Google Scholar 

  42. G. Qiu, C. Shan, X. Zhang, X. Lv, Ironmak. Steelmak. 44 (2017) 246–254.

    Article  Google Scholar 

  43. J. Xiang, X. Wang, M. Yang, J. Wang, C. Shan, G. Fan, G. Qiu, X. Lv, J. Mater. Res. Technol. 11 (2021) 1184–1192.

    Article  Google Scholar 

  44. Q.F. Shu, X. Zhang, K.C. Chou, Ironmak. Steelmak. 42 (2015) 641–647.

    Article  Google Scholar 

  45. S.M. Jung, R.J. Fruehan, ISIJ Int. 40 (2000) 348–355.

    Article  Google Scholar 

  46. N. Dogan, G.A. Brooks, M.A. Rhamdhani, ISIJ Int. 51 (2011) 1093–1101.

    Article  Google Scholar 

  47. K. Gu, N. Dogan, K.S. Coley, Metall. Mater. Trans. B 48 (2017) 2343–2353.

    Article  Google Scholar 

  48. J. Biswas, K. Gu, K.S. Coley, Metall. Mater. Trans. B 52 (2021) 3888–3906.

    Article  Google Scholar 

  49. J. Biswas, P.B. Drain, K. Gu, R.J. Longbottom, M.W. Chapman, B.J. Monaghan, K.S. Coley, Metall. Mater. Trans. B 53 (2022) 136–151.

    Article  Google Scholar 

  50. B. Zhang, K. Chen, R. Wang, C. Liu, M. Jiang, Metals 9 (2019) 409.

    Article  Google Scholar 

  51. R. Wang, B. Zhang, C. Hu, C. Liu, M. Jiang, JOM 74 (2022) 151–158.

    Article  Google Scholar 

  52. M.J. Luomala, E.O. Virtanen, P.T. Mure, T.P. Siivola, T.M.J. Fabritius, J.J. Härkki, Steel Res. 73 (2002) 9–14.

    Article  Google Scholar 

  53. M.S. Lee, S.L. O'Rourke, N.A. Molloy, Scand. J. Metall. 32 (2003) 281–288.

    Article  Google Scholar 

  54. S. Sabah, G. Brooks, Metall. Mater. Trans. B 46 (2015) 863–872.

    Article  Google Scholar 

  55. A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, G. Ril, AIME Met. Soc. Trans. 239 (1967) 1776–1791.

    Google Scholar 

  56. A.R. N. Meidani, M. Isac, A. Richardson, A. Cameron, R.I.L. Guthrie, ISIJ Int. 44 (2004) 1639–1645.

    Article  Google Scholar 

  57. M.M. Li, Q. Li, S.B. Kuang, Z.S. Zou, Metall. Mater. Trans. B 47 (2016) 116–126.

    Article  Google Scholar 

  58. J. Zheng, Z.Q. Liu, A.M. Lu, China Metall. 21 (2011) No. 10, 35–37.

    Google Scholar 

  59. S. Barella, A. Gruttadauria, C. Mapelli, D. Mombelli, Ironmak. Steelmak. 39 (2012) 463–469.

    Article  Google Scholar 

  60. B. Deo, A. Overbosch, B. Snoeijer, D. Das, K. Srinivas, Trans. Indian Inst. Met. 66 (2013) 543–554.

    Article  Google Scholar 

  61. M. Li, Q. Li, S. Kuang, Z. Zou, Ind. Eng. Chem. Res. 55 (2016) 3630–3640.

    Article  Google Scholar 

  62. M. Li, Q. Li, Z. Zou, B. Li, JOM 71 (2019) 729–736.

    Article  Google Scholar 

  63. L. Cao, Q. Liu, J. Sun, W. Lin, X. Feng, JOM 71 (2019) 754–763.

    Article  Google Scholar 

  64. Q. Li, M.M. Li, S.B. Kuang, Z.S. Zou, Metall. Mater. Trans. B 46 (2015) 1494–1509.

    Article  Google Scholar 

  65. Y. Cui, X.D. Nan, J. Feng, C.L. Bao, D.G. Zhou, L.X. Zhu, Steelmaking 26 (2010) No. 1, 70–73.

    Google Scholar 

  66. Z.J. Shi, G.C. Wang, Y.J. Li, Iron and Steel 42 (2007) No. 4, 24–26.

    Google Scholar 

  67. J.I. Fukumi, C. Taki, T. Hatanaka, H. Ogura, Tetsu-to-Hagane 76 (1990) 1956–1963.

    Article  Google Scholar 

  68. Z.G. Hu, L. Liu, P. He, M.X. Tan, Iron and Steel 39 (2004) 18–20.

    Google Scholar 

  69. Z.G. Hu, L. Liu, P. He, J. Iron Steel Res. 14 (2002) No. 3, 68–72.

    Google Scholar 

  70. D. Merriman, Steel Times 225 (1997) 439–440.

    Google Scholar 

  71. H.I. Iso, Y. Jyono, M. Kanemoto, Y. Ueda, T. Yoshida, K. Isogami, ISIJ Int. 27 (1987) 351–359.

    Article  Google Scholar 

  72. M. Wu, Y.J. Li, F.D. Wu, J. Yin, China Metall. 19 (2009) No. 4, 23–27.

    Google Scholar 

  73. M. Wu, F.D. Wu, China Metall. 18 (2008) No. 10, 33–36.

    Google Scholar 

  74. M. Wu, Z. Mei, Metall. Equip. (2006) No. 4, 68–72.

  75. F.L. Kemeny, D.I. Walker (Tenova Goodfellow Inc.), System for furnace slopping prediction and lance optimization, US, US71432610, 2012.

  76. J.J. Pak, D.J. Min, B.D. You, in: Steelmaking Conference Proc. London, UK, 1996, pp. 763–769.

  77. E. Lim, H. Kim, B. Son, IFAC Proc. 34 (2001) 29–33.

    Article  Google Scholar 

  78. Y. Iida, K. Emoto, M. Ogawa, Y. Masuda, M. Onishi, H. Yamada, ISIJ Int. 24 (1984) 540–546.

    Article  Google Scholar 

  79. T. Kanai, A. Sakai, J. Tani, S. Yoshida, N. Matsui, in: EOSC'97: 2nd European Oxygen Steelmaking Congress, Taranto, Proc. 2nd EOSC, 1997, pp. 267–275.

  80. D.I. Walker, F.L. Kemeny, J.A.T. Jones, Iron Steel Technol. 2 (2005) 58–64.

    Google Scholar 

  81. H. Takezoe, T. Saito, K. Ebato, J. Katsuda, M. Azuma, S. Hatoguchi, ISIJ Int. 31 (1991) 1368–1370.

    Article  Google Scholar 

  82. D.J. Zuliani, V. Scipolo, J. Maiolo, C. Born, Steel Times Int. 34 (2010) 19–20, 22.

    Google Scholar 

  83. J.B. Chang, Z.J. Han, G.Z. Wei, D.M. Du, in: Proc. of the 15th Steelmaking Academic Conference, Xiamen, China, 2008, pp. 78–80.

  84. J.B. Chang, Z.J. Han, G.Z. Wei, S.W. Li, Detection method and device of slag state of oxygen top blown BOF based on oxygen lance vibration, China, CN201010664Y, 2008.

  85. S. Kobayashi, A. Hatono, K. Katohgi, A. Kuriyama, K. Ichihara, IFAC Proc. 16 (1983) 297–301.

    Article  Google Scholar 

  86. T. Zou, Study on splashing phenomenon and its prediction in slag-making process in converter, Shanghai University, Shanghai, China, 2004.

  87. H.I. Iso, K. Arima, M. Kanemoto, Y. Ueda, H. Yamane, ISIJ Int. 28 (1988) 382–391.

    Article  Google Scholar 

  88. C. Kattenbelt, E. Spelbos, P. Mink, B. Roffel, Steel Res. Int. 79 (2008) 821–825.

    Article  Google Scholar 

  89. M. Evestedt, A. Medvedev, M. Thorén, W. Birk, IFAC Proc. 40 (2007) 267–272.

    Article  Google Scholar 

  90. W. Birk, I. Arvanitidis, A. Medvedev, P. Jönsson, Control Eng. Pract. 11 (2003) 49–56.

    Article  Google Scholar 

  91. J. Feng, Y. Jia, J.L. Yuan, J.H. An, J.G. Qiao, Y.Q. Duan, Hebei Metall. (2003) No. 5, 40–44, 37.

    Google Scholar 

  92. L. Wang, Bengang Technol. (1995) No. 5, 9–13.

    Google Scholar 

  93. J.J. Wang, Henan Metall. 12 (2004) No. 5, 3–6, 16.

    Google Scholar 

  94. M. Evestedt, A. Medvedev, J. Process. Control 19 (2009) 1000–1010.

    Article  Google Scholar 

  95. S.J. Han, C.L. Li, H.T. Ma, J. Iron Steel Res. 23 (2011) No. 3, 59–62.

    Google Scholar 

  96. J. Yenus, G. Brooks, M. Dunn, R. Kadam, Ironmak. Steelmak. 47 (2020) 178–187.

    Article  Google Scholar 

  97. R.P. De Menezes, P.F. Salarolli, L.G. Batista, H.S. Furtado, M.A.S.L. Cuadros, Ironmak. Steelmak. 49 (2022) 178–188.

    Article  Google Scholar 

  98. D.Y. Zhang, C.J. Zhang, Z.R. Xu, China Metall. 17 (2007) 20–22.

    Google Scholar 

  99. W. Birk, I. Arvanitidis, P.G. Jonsson, A. Medvedev, IEEE Trans. Ind. Appl. 37 (2001) 1067–1073.

    Article  Google Scholar 

  100. S. Sabah, G. Brooks, Ironmak. Steelmak. 43 (2016) 473–480.

    Article  Google Scholar 

  101. J. Heenatimulla, G.A. Brooks, M. Dunn, D. Sly, R. Snashall, W. Leung, Metals 12 (2022) 1142.

    Article  Google Scholar 

  102. J.Y. Chen, X.B. Zhang, J. Iron Steel Res. 6 (1994) 13–18.

    Google Scholar 

  103. L. De Vos, V. Cnockaert, I. Bellemans, C. Vercruyssen, K. Verbeken, Steel Res. Int. 92 (2021) 2000282.

    Article  Google Scholar 

  104. M. Brämming, B. Björkman, C. Samuelsson, Steel Res. Int. 87 (2016) 301–310.

    Article  Google Scholar 

  105. S.C. Zhang, Y. Liu, C.L. Du, Henan Metall. 13 (2005) No, 6, 43–45.

    Google Scholar 

  106. J.W. Wu, H. Li, Z.X. Lu, HeBei, Metall. (2008) No. 3, 20–22.

  107. M.J. Luomala, T.M.J. Fabritius, E.O. Virtanen, T.P. Siivola, J.J. Härkki, ISIJ Int. 42 (2002) 944–949.

    Article  Google Scholar 

  108. Z. Wang, Q. Liu, L. You, S. Wei, L. Cao, Ironmak. Steelmak. 45 (2018) 379–385.

    Article  Google Scholar 

  109. C.J. Liu, Y.X. Zhu, M.F. Jiang, Ironmak. Steelmak. 30 (2003) 36–42.

    Article  Google Scholar 

  110. G. Liu, K. Liu, P. Han, Ironmak. Steelmak. 48 (2021) 437–446.

    Article  Google Scholar 

  111. B.T. Maia, R.K. Imagawa, A.C. Petrucelli, R.P. Tavares, J. Mater. Res. Technol. 3 (2014) 244–256.

    Article  Google Scholar 

  112. Y. Higuchi, Y. Tago, ISIJ Int. 43 (2003) 1410–1414.

    Article  Google Scholar 

  113. R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, S.K. Ajmani, Metall. Mater. Trans. B 38 (2007) 45–53.

    Article  Google Scholar 

  114. G. Liu, K. Liu, P. Han, Ironmak. Steelmak. 48 (2021) 25–32.

    Article  Google Scholar 

  115. L. Li, M. Li, L. Shao, Q. Li, Z. Zou, Steel Res. Int. 91 (2020) 1900684.

    Article  Google Scholar 

  116. F. Liu, D. Sun, R. Zhu, F. Zhao, J. Ke, Ironmak. Steelmak. 44 (2017) 640–648.

    Article  Google Scholar 

  117. P. Ni, T. Haglund, M. Ersson, Steel Res. Int. 88 (2017) 1600399.

    Article  Google Scholar 

  118. T. Haglund, J. Huss, The viability of oxygen gas blowing as a foaming slag suppression system for slopping prevention in BOF-processes, KTH Royal Institute of Technology, Stockholm, Sweden, 2016.

  119. S.K. Shang, J.L. Yao, D.B. Wang, Method of defoaming in BOF, China, CN103805732A, 2014.

  120. M. Cui, Y.H. Kan, Z.Y. Deng, M.Y. Deng, G.Q. Dong, G.F. Ma, N. Xu, A method for controlling slag overflowing in the process of BOF tapping, China, CN112322824A, 2021.

  121. R.K. Galgali, P. Datta, A.K. Ray, K.K. Prasad, H.S. Ray, Ironmak. Steelmak. 28 (2001) 321–328.

    Article  Google Scholar 

  122. S.D. Kumar, G. Prasad, P.K. Ghorui, M. Ranjan, Ironmak. Steelmak. 35 (2008) 539–544.

    Article  Google Scholar 

  123. S. Chu, Q. Niu, K. Wu, Y. Wang, ISIJ Int. 40 (2000) 549–553.

    Article  Google Scholar 

  124. M. Maric, P. Eric, Australia, AU5996194, 1997.

  125. Z.H. Yan, Y. Wang, B.G. Luo, X.G. Zhang, Y.C. Wu, P. Pei, C.L. Zhao, Y.J. Bai, L. Zeng, L. Wang, Application of coal serving as steelmaking slag pressing agent and method for inhibiting steel slag bubbles, China, CN 201210317189, 2012.

  126. H.D. Chen, Shanxi Metall. 37 (2014) 61–63, 93.

    Google Scholar 

  127. K.L. Xu, L.X. Dong, S.Z. Liu, Steelmaking (1993) No. 1, 26–30, 60.

    Google Scholar 

  128. H. Ito, Method for defoaming molten slag, Canada, AU8591975, 1979.

  129. K. Wu, W. Qian, S. Chu, Q. Niu, H. Luo, ISIJ Int. 40 (2000) 954–957.

    Article  Google Scholar 

  130. K. Wu, S. Chu, W. Qian, Q. Niu, Steel Res. 70 (1999) 248–251.

    Article  Google Scholar 

  131. Y. Ogawa, H. Katayama, H. Hirata, N. Tokumitsu, M. Yamauchi, ISIJ Int. 32 (1992) 87–94.

    Article  Google Scholar 

  132. D.S. Liu, M.L. Shi, X.J. Wang, Defoaming agents in top-blowing oxygen BOF and its production method, China, CN94116687.2, 1994.

  133. X.W. Huang, H.M. Yu, Method for applying slag pressing agent produced by blast furnace gun mud to BOF steelmaking, China, CN201711153723.5, 2018.

  134. Y. Chen, X.T. Liang, J.H. Zeng, J. Chen, G.J. Li, S.X. Yang, S. Li, H.J. Gong, X.D. Yang, W. He, A method for preventing the slag foaming in BOF, China, CN 201210239184.8, 2012.

  135. K.Y. Li, X.S. Liu, N.X. Wang, B.Y. Zhang, J.L. Zhang, X.B. Li, An efficient agent for defoaming in BOF, China, CN201510137769.2, 2015.

  136. G.J. Gong, Sichuan Metall. 31 (2009) No. 1, 12–14.

    Google Scholar 

  137. D.S. Kumar, R. Sah, V.R. Sekhar, S.C. Vishwanath, Ironmak. Steelmak. 44 (2017) 134–139.

    Article  Google Scholar 

  138. H.Y. Wu, Ind. Heat. 43 (2014) No. 6, 65–67.

    Google Scholar 

  139. F. Zhang, China Metall. 25 (2015) No. 3, 37–40.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFC2901200), National Natural Science Foundation of China (52174383), Liaoning Provincial Natural Science Foundation of China (2022-YQ-09), Open Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization (GZ-2022-DK-003), and Fundamental Research Funds for the Central Universities (Grant No. N2225007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Rf., Zhang, B., Liu, Cj. et al. Review on monitoring and prevention technologies of splashing induced by inappropriate slag foaming in BOF. J. Iron Steel Res. Int. 30, 1661–1674 (2023). https://doi.org/10.1007/s42243-023-00954-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00954-0

Keywords

Navigation