Skip to main content
Log in

CO2 conversion and decarburization kinetics of CO2 gas and liquid Fe–C alloy at 1873 K

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The reactions between CO2 gas and liquid Fe–C alloy with different initial carbon concentrations at 1873 K were investigated using experimental results, thermodynamic equilibrium, and kinetic analysis. The average CO2 conversion is greater than 80% when the carbon content ranges from 4.0 to 1.0 wt.%. When the carbon content decreases from 0.5 to 0.1 wt.%, the average CO2 conversion diminishes from 83.50% to 40.84%. This proves that CO2 gas and liquid Fe–C alloy reaction does not reach equilibrium under experimental conditions compared with the calculated thermodynamic data. Through the kinetic analysis, it is shown that in the medium- to high-carbon liquid Fe–C alloys, the rate-controlling step involves CO2 gas mass transfer or mixed rate-controlling of CO2 gas mass transfer with adsorption and dissociation of CO2 gas. In contrast, in the low-carbon liquid Fe–C alloy, carbon mass transfer occurs in the molten alloy. The critical carbon content of the rate-controlling step transformation is 0.7937 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Environment and climate change. https://www.worldsteel.org/steel-by-topic/environment-climate-change.html. Accessed 20 Nov 202.

  2. B.Q. Lin, X.L. Wang, Energy 73 (2014) 465–474.

    Article  Google Scholar 

  3. C. Gao, W. Gao, K. Song, H. Na, F. Tian, S. Zhang, Sci. Total Environ. 670 (2019) 346–360.

    Article  Google Scholar 

  4. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, J.O. Wikstrom, ISIJ Int. 53 (2013) 2065–2071.

    Article  Google Scholar 

  5. K. Meijer, M. Denys, J. Lasar, J.P. Birat, G. Still, B. Overmaat, Ironmak. Steelmak. 36 (2009) 249–251.

    Article  Google Scholar 

  6. M. Lv, R. Zhu, X. Wei, H. Wang, X. Bi, Steel Res. Int. 83 (2012) 11–15.

    Article  Google Scholar 

  7. H. Wang, R. Zhu, X. Wang, Z. Li, Miner. Process. Extractive Metall. Trans. Institut. Min. Metall. Sect. C 126 (2017) 47–53.

    Google Scholar 

  8. C. Yi, R. Zhu, B.Y. Chen, C.R. Wang, J.X. Ke, ISIJ Int. 49 (2009) 1694–1699.

    Article  Google Scholar 

  9. G.S. Wei, R. Zhu, Y. Wang, X.T. Wu, K. Dong, J. Iron Steel Res. Int. 26 (2019) 909–916.

    Article  Google Scholar 

  10. B. Han, R. Zhu, Y. Zhu, R. Liu, W. Wu, Q. Li, G. Wei, Metall. Mater. Trans. B 49 (2018) 3544–3551.

    Article  Google Scholar 

  11. M. Lv, R. Zhu, L.Z. Yang, Steel Res. Int. 90 (2019) 1800454.

    Article  Google Scholar 

  12. D.R. Sain, G.R. Belton, Metall. Trans. B 7 (1976) 235–244.

    Article  Google Scholar 

  13. A.W. Cramb, G.R. Belton, Metall. Trans. B 12 (1981) 699–704.

    Article  Google Scholar 

  14. H.G. Lee, Y.K. Rao, Metall. Trans. B 13 (1982) 403–409.

    Article  Google Scholar 

  15. H.G. Lee, Y.K. Rao, Metall. Trans. B 13 (1982) 411–421.

    Article  Google Scholar 

  16. F.J. Mannion, R.J. Fruehan, Metall. Mater. Trans. B 20 (1989) 853–861.

    Article  Google Scholar 

  17. Q. Wei, Z.T. Li, Z. Li, Q.J. Gao, F.M. Shen, J. Iron Steel Res. Int. 23 (2016) 98–102.

    Article  Google Scholar 

  18. Recommended Equilibrium Data of Steelmaking Reactions, Revised and Supplemented ed., Science Promotion Committee of Japan, Tokyo, Japan, 1984.

  19. A. Rist, J. Chipman, Rev. Met. Paris 53 (1956) 796–808.

    Article  Google Scholar 

  20. X. Hu, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 37 (2006) 395–401.

    Article  Google Scholar 

  21. M.P. Järvinen, S. Pisilä, A. Kärnä, T. Ikäheimonen, P. Kupari, T. Fabritius, Steel Res. Int. 82 (2011) 638–649.

    Article  Google Scholar 

  22. D.R. Sain, G.R. Belton, Metall. Trans. B 9 (1978) 403–407.

    Article  Google Scholar 

  23. B. Deo, R. Boom, Fundamentals of steelmaking metallurgy, Prentice-Hall, New Jersey, USA, 1993.

    Google Scholar 

  24. K.C. Chou, U.B. Pal, R.G. Reddy, ISIJ Int. 33 (1993) 862–868.

    Article  Google Scholar 

  25. G. Brooks, Y. Pan, S.K. Coley, Metall. Mater. Trans. B 36 (2005) 525–535.

    Article  Google Scholar 

  26. F.D. Richardson, Physical chemistry of melts in metallurgy, Academic Press, Elsevier, Amsterdam, Holland, 1974.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the support of the National Natural Science Foundation of China (Nos. 51674021 and 52004023) and Major Science and Technology Innovation Project of Shandong Province of China (No. 2019JZZY010358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-sheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Wh., Zhu, R., Li, Zz. et al. CO2 conversion and decarburization kinetics of CO2 gas and liquid Fe–C alloy at 1873 K. J. Iron Steel Res. Int. 29, 425–433 (2022). https://doi.org/10.1007/s42243-021-00624-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00624-z

Keywords

Navigation