Skip to main content
Log in

Microstructure-based finite element modeling of effect of metastable austenite on mechanical properties of quenching and partitioning (Q&P) 980 steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure-based finite element modeling was conducted to study the mechanical properties of Q&P 980 steel at the microscopic level. The two-dimensional representative volume elements of real microstructure were obtained from electron backscattered diffraction mapping. Mecking–Kocks equation was used to predict the constitutive strain–stress relationships of individual phases. Mechanical-induced martensitic transformation takes place when the driving force exceeds the critical driving force according to a stress-invariant-based model. The macroscopic stress–strain curves and the work-hardening rate curves obtained from modeling fit well with the experimental results. The simulation results also indicate that the local distributions of stress and strain in constituent phases are dependent on their strength. Soft ferrite carries the highest strain, while hard mechanical-induced martensite carries the highest stress. By comparing the modeling results of the microstructures with and without austenite, it shows that the transformation of retained austenite to hard martensite can increase the work-hardening ability and hence improve the strength and ductility of the steel. The detailed finite element modeling methods and results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Fu, W.Y. Yang, Y.D. Wang, L.F. Li, Z.Q. Sun, Y. Ren, Acta Mater. 76 (2014) 342–354.

    Article  Google Scholar 

  2. X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrogen Energy 39 (2014) 13031–13040.

    Article  Google Scholar 

  3. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe, Mater. Sci. Eng. A 636 (2015) 551–564.

    Article  Google Scholar 

  4. J. Chiang, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 638 (2015) 132–142.

    Article  Google Scholar 

  5. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, W. Bleck, Mater. Sci. Eng. A 560 (2013) 129–139.

    Article  Google Scholar 

  6. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, F. Delannay, Acta Mater. 55 (2007) 3681–3693.

    Article  Google Scholar 

  7. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55 (2007) 6713–6723.

    Article  Google Scholar 

  8. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  9. M. Xu, Y.G. Yang, J.Y. Chen, D. Tang, H.T. Jiang, Z.L. Mi, J. Iron Steel Res. Int. 24 (2017) 1125–1130.

    Article  Google Scholar 

  10. L.B. Luo, W. Li, Y. Gong, L. Wang, X.J. Jin, J. Iron Steel Res. Int. 24 (2017) 1104–1108.

    Article  Google Scholar 

  11. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta Mater. 57 (2009) 2592–2604.

    Article  Google Scholar 

  12. G. Lacroix, T. Pardoen, P.J. Jacques, Acta Mater. 56 (2008) 3900–3913.

    Article  Google Scholar 

  13. S. Cheng, X.L. Wang, Z. Feng, B. Clausen, H. Choo, P.K. Liaw, Metall. Mater. Trans. A 39 (2008) 3105–3112.

    Article  Google Scholar 

  14. I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, I. Sabirov, Mater. Sci. Eng. A 611 (2014) 201–211.

    Article  Google Scholar 

  15. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta Mater. 57 (2009) 3965–3977.

    Article  Google Scholar 

  16. J. Serri, M. Cherkaoui, J. Eng. Mater. Technol. 130 (2008) 031009.

    Article  Google Scholar 

  17. S.K. Paul, Comput. Mater. Sci. 56 (2012) 34–42.

    Article  Google Scholar 

  18. F. Hosseinabadi, A. Rezaee-Bazzaz, M. Mazinani, Metall. Mater. Trans. A 48 (2017) 930–942.

    Article  Google Scholar 

  19. X.H. Hu, X. Sun, L.G. Hector, Y. Ren, Acta Mater. 132 (2017) 230–244.

    Article  Google Scholar 

  20. H. Ghassemi-Armaki, P. Chen, S. Bhat, S. Sadagopan, S. Kumar, A. Bower, Acta Mater. 61 (2013) 3640–3652.

    Article  Google Scholar 

  21. J. Bouquerel, K. Verbeken, B.C. De Cooman, Acta Mater. 54 (2006) 1443–1456.

    Article  Google Scholar 

  22. S.K. Paul, A. Kumar, Comput. Mater. Sci. 63 (2012) 66–74.

    Article  Google Scholar 

  23. G. Krauss, Mater. Sci. Eng. A 273–275 (1999) 40–57.

    Article  Google Scholar 

  24. H.S. Zhao, W. Li, L. Wang, S. Zhou, X.J. Jin, Metall. Mater. Trans. A 47 (2016) 3943–3955.

    Article  Google Scholar 

  25. S.J. Lee, J. Mola, B.C. De Cooman, Metall. Mater. Trans. A 43 (2012) 4921–4925.

    Article  Google Scholar 

  26. V. Uthaisangsuk, U. Prahl, W. Bleck, Eng. Frac. Mech. 78 (2011) 469–486.

    Article  Google Scholar 

  27. J.M. Zhou, A.M. Gokhale, A. Gurumurthy, S.P. Bhat, Mater. Sci. Eng. A 630 (2015) 107–115.

    Article  Google Scholar 

  28. D.L. Bourell, A. Rizk, Acta Metall. 31 (1983) 609–617.

    Article  Google Scholar 

  29. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Metall. Mater. Trans. A 40 (2009) 796–809.

    Article  Google Scholar 

  30. V. Uthaisangsuk, U. Prahl, W. Bleck, Comput. Mater. Sci. 43 (2008) 27–35.

    Article  Google Scholar 

  31. N. Nakada, J. Syarif, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 374 (2004) 137–144.

    Article  Google Scholar 

  32. P.J. Jacques, F. Delannay, J. Ladrière, Metall. Mater. Trans. A 32 (2001) 2759–2768.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Key Research and Development Program of China (No. 2017YFB0304401) and National Natural Science Foundation of China (Nos. U1564203, 51571141 and 51201105). The authors also gratefully acknowledge the support provided by Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Gong or Xue-jun Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Li, W., Gong, Y. et al. Microstructure-based finite element modeling of effect of metastable austenite on mechanical properties of quenching and partitioning (Q&P) 980 steel. J. Iron Steel Res. Int. 25, 1140–1148 (2018). https://doi.org/10.1007/s42243-018-0181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0181-5

Keywords

Navigation