Skip to main content
Log in

Finite Element Simulation of Mechanical Behavior of TRIP800 Steel Under Different Loading Conditions Using an Advanced Microstructure-Based Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical behavior of a low alloy multiphase TRIP steel has been predicted by an advanced microstructure-based finite element method. A representative volume element chosen based on the actual microstructure has been utilized for simulating the mechanical behavior of the studied steel. The parameters describing the martensitic transformation kinetics have been estimated using both crystallographic and thermodynamic theories of martensitic transformation. The mechanical behavior of each of the constituent phases required for the prediction of mechanical behavior of the studied material has been extracted from those reported in the literature. Comparison of the predicted mechanical behavior of the investigated TRIP800 steel with those reported in the literature shows that there is good agreement between simulated and experimental results. Therefore, it can be said that, the utilized microstructure-based model can be used for the prediction of both mechanical and transformation behaviors of the TRIP800 steels. It is worth noting that all of the parameters used in the model, except the sensitivity of the martensitic transformation to the stress state, can be estimated theoretically; thus, the number of parameters obtained by correlating the simulated and experimental results reduces to one. This is the unique characteristic of the utilized model, which makes the application of the model for simulation of the mechanical behavior of TRIP steels simpler than that of the similar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, J. Ach. Mater. Manuf. Eng. 2006, vol. 14, pp. 26–30.

    Google Scholar 

  2. G.B. Olson, M. Cohen, Metall. Trans. A, 1975, vol. 6, pp. 791–95.

    Article  Google Scholar 

  3. R.G. Stringfellow, D.M. Parks, G.B. Olson, Acta Metall. Mater., 1992, vol. 40, pp. 1703–16.

    Article  Google Scholar 

  4. T. Iwamoto, T. Tsuta, Y. Tomita, Int. J. Mech. Sci., 1998, vol. 16, pp. 173–82.

    Article  Google Scholar 

  5. T. Iwamoto, T. Tsuta, Int. J. Plast., 2000, vol. 16, pp. 791–804.

    Article  Google Scholar 

  6. I. Papatriantafillou, N. Aravas, G.N. Haidemenopoulos, Steel. Research. Int., 2004, vol. 75, pp. 730–36.

    Article  Google Scholar 

  7. T. Iwamoto, Int. J. Plast., 2004, vol. 20, pp. 841–69.

    Article  Google Scholar 

  8. A. Perlade, O. Bouaziz, Q. Furne´mont, Mater. Sci. Eng. A., 2003, vol. 356, pp. 145–52.

    Article  Google Scholar 

  9. F. Marketz, F. D. Fischer, Comput. Mater.Sci., 1994, vol. 3, pp. 307–25.

    Article  Google Scholar 

  10. G. Reisner, E. A. Werner, F. D. Fischer, Int. J. Solids Struct., 1998, vol. 35, pp. 2457–73.

    Article  Google Scholar 

  11. L. Taleb, F. Sidoroff, Int. J. Plast., 2003, vol. 19, pp. 1821–42.

    Article  Google Scholar 

  12. H.N. Han, C.G. Lee, C.S. Oh, T.H. Lee, S.J. Kią‹, Acta Mater., 2004, vol. 52, pp. 5203–14.

    Article  Google Scholar 

  13. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Y. Ren, Y.D. Wang, Metal. Mater.Trans. A. 2008, vol. 39, pp. 3089–96.

    Article  Google Scholar 

  14. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta.Mater., 2009, vol. 57, pp. 2592–2604.

    Article  Google Scholar 

  15. K.S. Choi, A. Solami, W.N. Liu, X. Sun, M.A. Khaleel, Comput. Mater. Sci., 2010, vol. 50, pp. 720–30.

    Article  Google Scholar 

  16. M. Cherkaoui, A. Soulami, A. Zeghloul, M.A. Khaleel, Phil. Mag., 2010, vol. 88, pp. 3479-3512.

    Article  Google Scholar 

  17. J. Serri, M. Cherkaoui, J. Eng. Mater.Technol. 2008, vol. 130, pp.1–13.

    Article  Google Scholar 

  18. H.K.D.H. Bhadeshia, Geometry of crystals, Second ed., Fellow of Darwin College, Cambridge, 2006.

    Google Scholar 

  19. S. Kundu, Ph. D. Thesis, University of Cambridge, 2007.

  20. J.W. Christian, The theory of transformation in metals and alloys, Pergamon, New York, 2002.

    Google Scholar 

  21. C. M. Parish, M. Sc. Thesis, University of Pittsburgh, Pennsylvania, 2003.

  22. G. F. Vander Voort, Metallography; Principles and Practice, Materials and Engineering Series, McGraw-Hill, New York, 1984.

    Google Scholar 

  23. M. Mazinani, Ph. D. Thesis, University of British Columbia, Vancouver, BC, 2006.

  24. ABAQUS general purpose finite element program, Version 6-10-1, Dassault Systemes Simulia Corp., Providence, 2010.

  25. L. Delannay, P. Jacques, T. Pardoen, Int. J. Solids. Struct., 2008, vol. 45, pp. 1825–43.

    Article  Google Scholar 

  26. H.K.D.H. Bhadesia, D.V. Edmonds, Metall. Trans A., 1979, vol. 10, pp. 895–907.

    Article  Google Scholar 

  27. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater., 2005, vol. 53, pp. 5439-5447.

    Article  Google Scholar 

  28. M.Y. Zhang, F.X. Zhu, D.S. Zheng, Int. J. Iron Steel Res., 2011, vol. 18, pp. 73–78.

    Google Scholar 

  29. E975-03, Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation, 2003.

  30. B.D. Cullity, Elements of X-ray Diffraction, Second ed., Addison-Wesley publishing Co. Inc., Reading, 1978.

    Google Scholar 

  31. P.J. Jacques, Q. Furnemont, F. Lani, T. Pardoen, F. Delannay, Acta.Mater., 2007, vol. 55, pp. 3681–93.

    Article  Google Scholar 

  32. H.K.D.H. Bhadeshia, Metal. Sci., 1981, vol. 15, pp. 175–77.

    Article  Google Scholar 

  33. S. Li, R. Zhu, I. Karaman, R. Arroyave, Acta, Mater, 2012, vol. 60, pp. 6120–30.

    Article  Google Scholar 

  34. J.A. Lobo, G.H. Geiger, Metall. Trans A., 1976, vol. 7, pp. 1347–57.

    Article  Google Scholar 

  35. J.C. Fhisher, Met. Trans, 1949, vol. 185, pp. 688–90.

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank Prof. W.J. Poole at university of British Columbia for providing the TRIP steel for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rezaee-Bazzaz.

Additional information

Manuscript submitted February 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinabadi, F., Rezaee-Bazzaz, A. & Mazinani, M. Finite Element Simulation of Mechanical Behavior of TRIP800 Steel Under Different Loading Conditions Using an Advanced Microstructure-Based Model. Metall Mater Trans A 48, 930–942 (2017). https://doi.org/10.1007/s11661-016-3879-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3879-7

Keywords

Navigation