Skip to main content
Log in

The prospects for bioprinting tumor models: recent advances in their applications

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) tumor models prepared from patient-derived cells have been reported to imitate some of the biological development processes of in situ tumors in vitro. These 3D tumor models share several important characteristics with their in vivo tumor counterparts. Accordingly, their applications in tumor modeling, drug screening, and precision-targeted treatment are promising. However, the establishment of tumor models is subject to several challenges, including advancements in scale size, repeatability, structural precision in time and space, vascularization, and the tumor microenvironment. Recently, bioprinting technologies enabling the editorial arrangement of cells, factors, and materials have improved the simulation of tumor models in vitro. Among the 3D bioprinted tumor models, the organoid model has been widely appreciated for its advantages of maintaining high heterogeneity and capacity for simulating the developmental process of tumor tissues. In this review, we outline approaches and potential prospects for tumor model bioprinting and discuss the existing bioprinting technologies and bioinks in tumor model construction. The multidisciplinary combination of tumor pathology, molecular biology, material science, and additive manufacturing will help overcome the barriers to tumor model construction by allowing consideration of the structural and functional characteristics of in vitro models and promoting the development of heterogeneous tumor precision therapies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254. https://doi.org/10.1038/ncb3312

    Article  Google Scholar 

  2. Marsee A, Roos FJM, Verstegen MMA et al (2021) Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28(5):816–832. https://doi.org/10.1016/j.stem.2021.04.005

    Article  Google Scholar 

  3. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  Google Scholar 

  4. Ren Y, Yang X, Ma Z et al (2021) Developments and opportunities for 3D bioprinted organoids. Int J Bioprint 7(3):364. https://doi.org/10.18063/ijb.v7i3.364

  5. Kim SC, Park JW, Seo HY et al (2022) Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses. Adv Sci 9(5):2103360. https://doi.org/10.1002/advs.202103360

    Article  Google Scholar 

  6. Lian L, Zhou C, Tang G et al (2022) Uniaxial and coaxial vertical embedded extrusion bioprinting. Adv Healthc Mater 11(9):2102411. https://doi.org/10.1002/adhm.202102411

    Article  Google Scholar 

  7. Byrne A (2018) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Radiother Oncol 127:S119–S120. https://doi.org/10.1016/s0167-8140(18)30534-6

    Article  Google Scholar 

  8. Huang L, Bockorny B, Paul I et al (2020) PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 5(21):e135544. https://doi.org/10.1172/jci.insight.135544

    Article  Google Scholar 

  9. Kessler M, Hoffmann K, Brinkmann V et al (2015) The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 6(1):8989. https://doi.org/10.1038/ncomms9989

    Article  Google Scholar 

  10. Rock JR, Onaitis MW, Rawlins EL et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106(31):12771–12775. https://doi.org/10.1073/pnas.0906850106

    Article  Google Scholar 

  11. Huch M, Gehart H, van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1–2):299–312. https://doi.org/10.1016/j.cell.2014.11.050

    Article  Google Scholar 

  12. Boj SF, Hwang CI, Baker LA et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338. https://doi.org/10.1016/j.cell.2014.12.021

    Article  Google Scholar 

  13. Bartfeld S, Bayram T, van de Wetering M et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136.E6. https://doi.org/10.1053/j.gastro.2014.09.042

    Article  Google Scholar 

  14. Sachs N, de Ligt J, Kopper O et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–386.E10. https://doi.org/10.1016/j.cell.2017.11.010

    Article  Google Scholar 

  15. Glorevski N, Sachs N, Manfrin A et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564. https://doi.org/10.1038/nature20168

    Article  Google Scholar 

  16. Driehuis E, Kretzschmar K, Clevers H (2020) Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15(10):3380–3409. https://doi.org/10.1038/s41596-020-0379-4

    Article  Google Scholar 

  17. Peng W, Datta P, Wu Y et al (2018) Challenges in bio-fabrication of organoid cultures. Adv Exp Med Biol 1107:53–71. https://doi.org/10.1007/5584_2018_216

    Article  Google Scholar 

  18. Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36. https://doi.org/10.1016/j.cell.2011.06.030

    Article  Google Scholar 

  19. Simian M, Bissell MJ (2017) Organoids: a historical perspective of thinking in three dimensions. J Cell Biol 216(1):31–40. https://doi.org/10.1083/jcb.201610056

    Article  Google Scholar 

  20. Yoshida GJ (2020) Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 13(1):4. https://doi.org/10.1186/s13045-019-0829-z

    Article  Google Scholar 

  21. Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21(10):571–584. https://doi.org/10.1038/s41580-020-0259-3

    Article  Google Scholar 

  22. Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18(7):407–418. https://doi.org/10.1038/s41568-018-0007-6

    Article  Google Scholar 

  23. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

    Article  Google Scholar 

  24. Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22(12):1392–1401. https://doi.org/10.1038/nm.4238

    Article  Google Scholar 

  25. Groll J, Boland T, Blunk T et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001. https://doi.org/10.1088/1758-5090/8/1/013001

    Article  Google Scholar 

  26. Jorgensen AM, Yoo JJ, Atala A (2020) Solid organ bioprinting: strategies to achieve organ function. Chem Rev 120(19):11140–11174. https://doi.org/10.1021/acs.chemrev.0c00145

    Article  Google Scholar 

  27. Heinrich MA, Liu W, Jimenez A et al (2019) 3D bioprinting: from benches to translational applications. Small 15(23):1805510. https://doi.org/10.1002/smll.201805510

    Article  Google Scholar 

  28. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  29. Pati F, Gantelius J, Svahn HA (2016) 3D bioprinting of tissue/organ models. Angew Chem Int Ed 55(15):4650–4665. https://doi.org/10.1002/anie.201505062

    Article  Google Scholar 

  30. Choudhury D, Anand S, Naing MW (2018) The arrival of commercial bioprinters - towards 3D bioprinting revolution! Int J Bioprint 4(2):139. https://doi.org/10.18063/IJB.v4i2.139

    Article  Google Scholar 

  31. Cui X, Boland T, D’Lima DD et al (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Delivery Formul 6(2):149–155. https://doi.org/10.2174/187221112800672949

    Article  Google Scholar 

  32. Xiong R, Zhang Z, Chai W et al (2017) Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication 9(2):024103. https://doi.org/10.1088/1758-5090/aa74f2

    Article  Google Scholar 

  33. Skoog SA, Goering PL, Narayan RJ (2014) Stereolithography in tissue engineering. J Mater Sci Mater Med 25(3):845–856. https://doi.org/10.1007/s10856-013-5107-y

    Article  Google Scholar 

  34. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1):32–45. https://doi.org/10.1186/ar614

    Article  Google Scholar 

  35. Yan J, Qin Y, Fan WT et al (2021) Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chem Sci 12(43):14432–14440. https://doi.org/10.1039/d1sc04138j

    Article  Google Scholar 

  36. Kang D, Park JA, Kim W et al (2021) All-inkjet-printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci 8(10):2004990. https://doi.org/10.1002/advs.202004990

    Article  Google Scholar 

  37. Xu T, Gregory CA, Molnar P et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588. https://doi.org/10.1016/j.biomaterials.2006.01.048

    Article  Google Scholar 

  38. Li X, Liu B, Pei B et al (2020) Inkjet bioprinting of biomaterials. Chem Rev 120(19):10596–10636. https://doi.org/10.1021/acs.chemrev.0c00008

    Article  Google Scholar 

  39. Tang M, Rich JN, Chen S (2021) Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier. Adv Mater 33(5):2004776. https://doi.org/10.1002/adma.202004776

    Article  Google Scholar 

  40. Xu C, Chai W, Huang Y et al (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160. https://doi.org/10.1002/bit.24591

    Article  Google Scholar 

  41. Lee YB, Polio S, Lee W et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652. https://doi.org/10.1016/j.expneurol.2010.02.014

    Article  Google Scholar 

  42. Hoelzl K, Lin S, Tytgat L et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  Google Scholar 

  43. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  Google Scholar 

  44. Mandrycky C, Wang Z, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  Google Scholar 

  45. Vijayavenkataraman S, Yan WC, Lu WF et al (2018) 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Delivery Rev 132:296–332. https://doi.org/10.1016/j.addr.2018.07.004

    Article  Google Scholar 

  46. Othon CM, Wu X, Anders JJ et al (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3(3):034101. https://doi.org/10.1088/1748-6041/3/3/034101

    Article  Google Scholar 

  47. Pirlo RK, Wu P, Liu J et al (2012) PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLPTM. Biotechnol Bioeng 109(1):262–273. https://doi.org/10.1002/bit.23295

    Article  Google Scholar 

  48. Li J, Chen M, Fan X et al (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 14:271. https://doi.org/10.1186/s12967-016-1028-0

    Article  Google Scholar 

  49. Ning L, Chen X (2017) A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 12(8):1600671. https://doi.org/10.1002/biot.201600671

    Article  Google Scholar 

  50. Liu W, Heinrich MA, Zhou Y et al (2017) Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater 6(12):1600671. https://doi.org/10.1002/adhm.201601451

    Article  Google Scholar 

  51. Mueller M, Ozturk E, Arlov O et al (2017) Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223. https://doi.org/10.1007/s10439-016-1704-5

    Article  Google Scholar 

  52. Bertassoni LE, Cardoso JC, Manoharan V et al (2014) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6(2):024105. https://doi.org/10.1088/1758-5082/6/2/024105

    Article  Google Scholar 

  53. Brassard JA, Nikolaev M, Huebscher T et al (2021) Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater 20(1):22–29. https://doi.org/10.1038/s41563-020-00803-5

    Article  Google Scholar 

  54. Zhang S, Qi C, Zhang W et al (2022) In situ endothelialization of free-form 3D network of interconnected tubular channels via interfacial coacervation by aqueous-in-aqueous embedded bioprinting. Adv Mater 35(7):2209263. https://doi.org/10.1002/adma.202209263

    Article  Google Scholar 

  55. Wang D, Maharjan S, Kuang X et al (2022) Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv 8(43):eabq6900. https://doi.org/10.1126/sciadv.abq6900

    Article  Google Scholar 

  56. Zheng Z, Eglin D, Alini M et al (2021) Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering 7(7):966–978. https://doi.org/10.1016/j.eng.2020.05.0212095-8099

    Article  Google Scholar 

  57. Sun Y, Yu K, Gao Q et al (2022) Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Des Manuf 5(3):633–639. https://doi.org/10.1007/s42242-022-00189-0

    Article  Google Scholar 

  58. Daly AC, Prendergast ME, Hughes AJ et al (2021) Bioprinting for the biologist. Cell 184(1):18–32. https://doi.org/10.1016/j.cell.2020.12.002

    Article  Google Scholar 

  59. Cui H, Nowicki M, Fisher JP et al (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118. https://doi.org/10.1002/adhm.201601118

    Article  Google Scholar 

  60. Quan H, Zhang T, Xu H et al (2020) Photo-curing 3D printing technique and its challenges. Bioact Mater 5(1):110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003

    Article  Google Scholar 

  61. Creff J, Courson R, Mangeat T et al (2019) Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials 221:119404. https://doi.org/10.1016/j.biomaterials.2019.119404

    Article  Google Scholar 

  62. Grigoryan B, Paulsen SJ, Corbett DC et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458–464. https://doi.org/10.1126/science.aav9750

    Article  Google Scholar 

  63. Bernal PN, Bouwmeester M, Madrid-Wolff J et al (2022) Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater 34(15):2110054. https://doi.org/10.1002/adma.202110054

    Article  Google Scholar 

  64. Chen Y, Zhang J, Liu X et al (2020) Noninvasive in vivo 3D bioprinting. Sci Adv 6(23):eaba7406. https://doi.org/10.1126/sciadv.aba7406

    Article  Google Scholar 

  65. Groll J, Burdick JA, Cho DW et al (2019) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52

    Article  Google Scholar 

  66. Hinton TJ, Jallerat Q, Palchesko RN et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9):e1500758. https://doi.org/10.1126/sciadv.1500758

    Article  Google Scholar 

  67. Liu H, Kiseleva AA, Golemis EA (2018) Ciliary signalling in cancer. Nat Rev Cancer 18(8):511–524. https://doi.org/10.1038/s41568-018-0023-6

    Article  Google Scholar 

  68. Valot L, Martinez J, Mehdi A et al (2019) Chemical insights into bioinks for 3D printing. Chem Soc Rev 48(15):4049–4086. https://doi.org/10.1039/c7cs00718c

    Article  Google Scholar 

  69. Gungor-Ozkerim PS, Inci I, Zhang YS et al (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915–946. https://doi.org/10.1039/c7bm00765e

    Article  Google Scholar 

  70. Hospodiuk M, Dey M, Sosnoski D et al (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  Google Scholar 

  71. Gu Z, Fu J, Lin H et al (2020) Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci 15(5):529–557. https://doi.org/10.1016/j.ajps.2019.11.003

    Article  Google Scholar 

  72. Domingos M, Gloria A, Coelho J et al (2017) Three-dimensional printed bone scaffolds: the role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc Inst Mech Eng Part H J Eng Med 231(6):555–564. https://doi.org/10.1177/0954411916680236

    Article  Google Scholar 

  73. Ligon SC, Liska R, Stampfl J et al (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  74. Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  Google Scholar 

  75. Piskin E (1995) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6(9):775–795. https://doi.org/10.1163/156856295x00175

    Article  Google Scholar 

  76. Skardal A, Devarasetty M, Kang HW et al (2016) Bioprinting cellularized constructs using a tissue-specific hydrogel bioink. J Vis Exp 110:e53606. https://doi.org/10.3791/53606

    Article  Google Scholar 

  77. Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  Google Scholar 

  78. Gruene M, Pflaum M, Hess C et al (2011) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng C Methods 17(10):973–982. https://doi.org/10.1089/ten.tec.2011.0185

    Article  Google Scholar 

  79. De Santis MM, Alsafadi HN, Tas S et al (2021) Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater 33(3):2005476. https://doi.org/10.1002/adma.202005476

    Article  Google Scholar 

  80. Bedell ML, Navara AM, Du Y et al (2020) Polymeric systems for bioprinting. Chem Rev 120(19):10547–10595. https://doi.org/10.1021/acs.chemrev.9b00834

    Article  Google Scholar 

  81. Xin S, Deo KA, Dai J et al (2021) Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv 7(42):eabk3087. https://doi.org/10.1126/sciadv.abk3087

    Article  Google Scholar 

  82. Xu C, Lee W, Dai G et al (2018) Highly elastic biodegradable single-network hydrogel for cell printing. ACS Appl Mater Interfaces 10(12):9969–9979. https://doi.org/10.1021/acsami.8b01294

    Article  Google Scholar 

  83. Hull SM, Lindsay CD, Brunel LG et al (2021) 3D bioprinting using UNIversal Orthogonal Network (UNION) bioinks. Adv Funct Mater 31(7):2007983. https://doi.org/10.1002/adfm.202007983

    Article  Google Scholar 

  84. Zhou J, Tian Z, Tian Q et al (2021) 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater 6(6):1711–1726. https://doi.org/10.1016/j.bioactmat.2020.11.027

    Article  Google Scholar 

  85. Ke D, Yi H, Est-Witte S et al (2020) Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication 12(1):015022. https://doi.org/10.1088/1758-5090/ab5354

    Article  Google Scholar 

  86. Ma L, Li Y, Wu Y et al (2020) The construction of in vitro tumor models based on 3D bioprinting. Bio-Des Manuf 3(3):227–236. https://doi.org/10.1007/s42242-020-00068-6

    Article  Google Scholar 

  87. Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51. https://doi.org/10.1038/nbt.2786

    Article  Google Scholar 

  88. Weeber F, van de Wetering M, Hoogstraat M et al (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA 112(43):13308–13311. https://doi.org/10.1073/pnas.1516689112

    Article  Google Scholar 

  89. Drost J, Karthaus WR, Gao D et al (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11(2):347–358. https://doi.org/10.1038/nprot.2016.006

    Article  Google Scholar 

  90. Fujii M, Shimokawa M, Date S et al (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838. https://doi.org/10.1016/j.stem.2016.04.003

    Article  Google Scholar 

  91. Cai X, Yuan F, Zhu J et al (2021) Glioma-associated stromal cells stimulate glioma malignancy by regulating the tumor immune microenvironment. Front Oncol 11:672928. https://doi.org/10.3389/fonc.2021.672928

    Article  Google Scholar 

  92. Vlachogiannis G, Hedayat S, Vatsiou A et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926. https://doi.org/10.1126/science.aao2774

    Article  Google Scholar 

  93. Zhao Y, Yao R, Ouyang L et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6(3):035001. https://doi.org/10.1088/1758-5082/6/3/035001

    Article  Google Scholar 

  94. Cao X, Ashfaq R, Cheng F et al (2019) A tumor-on-a-chip system with bioprinted blood and lymphatic vessel pair. Adv Funct Mater 29(31):1807173. https://doi.org/10.1002/adfm.201807173

    Article  Google Scholar 

  95. Wu D, Wang Z, Li J et al (2022) A 3D-bioprinted multiple myeloma model. Adv Healthc Mater 11(7):2100884. https://doi.org/10.1002/adhm.202100884

    Article  Google Scholar 

  96. Yi HG, Jeong YH, Kim Y et al (2019) A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 3(7):509–519. https://doi.org/10.1038/s41551-019-0363-x

    Article  Google Scholar 

  97. Xie F, Sun L, Pang Y et al (2021) Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials 265:120416. https://doi.org/10.1016/j.biomaterials.2020.120416

    Article  Google Scholar 

  98. Jiang S, Zhao H, Zhang W et al (2020) An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep Med 1(9):100161. https://doi.org/10.1016/j.xcrm.2020.100161

    Article  Google Scholar 

  99. Kwak TJ, Lee E (2020) In vitro modeling of solid tumor interactions with perfused blood vessels. Sci Rep 10:20142. https://doi.org/10.1038/s41598-020-77180-1

    Article  Google Scholar 

  100. Neal JT, Li X, Zhu J et al (2018) Organoid modeling of the tumor immune microenvironment. Cell 175(7):1972–1988. https://doi.org/10.1016/j.cell.2018.11.021

    Article  Google Scholar 

  101. Jin Z, Li X, Zhang X et al (2021) Engineering the fate and function of human T-cells via 3D bioprinting. Biofabrication 13(3):035016. https://doi.org/10.1088/1758-5090/abd56b

    Article  Google Scholar 

  102. Kim E, Choi S, Kang B et al (2020) Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588(7839):664–669. https://doi.org/10.1038/s41586-020-3034-x

    Article  Google Scholar 

  103. Schuster B, Junkin M, Kashaf SS et al (2020) Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun 11(1):5271. https://doi.org/10.1038/s41467-020-19058-4

    Article  Google Scholar 

  104. Shi Y, Cai Y, Cao Y et al (2021) Recent advances in microfluidic technology and applications for anti-cancer drug screening. TrAC Trends Anal Chem 134:116118. https://doi.org/10.1016/j.trac.2020.116118

    Article  Google Scholar 

  105. Ran R, Wang HF, Hou F et al (2019) A microfluidic tumor-on-a-chip for assessing multifunctional liposomes’ tumor targeting and anticancer efficacy. Adv Healthc Mater 8(8):1900015. https://doi.org/10.1002/adhm.201900015

    Article  Google Scholar 

  106. Monteiro MV, Zhang YS, Gaspar VM et al (2022) 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 40(4):432–447. https://doi.org/10.1016/j.tibtech.2021.08.007

    Article  Google Scholar 

  107. Carvalho MR, Barata D, Teixeira LM et al (2019) Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. Sci Adv 5(5):1317. https://doi.org/10.1126/sciadv.aaw1317

    Article  Google Scholar 

  108. Ma J, Wang Y, Liu J (2018) Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 8(39):21712–21727. https://doi.org/10.1039/c8ra03022g

    Article  Google Scholar 

  109. Aleman J, Kilic T, Mille LS et al (2021) Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc 16(5):2564–2593. https://doi.org/10.1038/s41596-021-00511-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciated the financial support from the National Key R&D Program of China (No. 2018YFA0703000), the National Natural Science Foundation of China (No. 82072412), the Translation Medicine National Key Science and Technology Infrastructure (Shanghai) Open Project (No. TMSK-2020-118), the Lingang Laboratory “Seeking Outstanding Youth Program” Open Project (No. LG-QS-202206-04), and the Shanghai Municipal Natural Science Foundation (No. 19ZR1429100).

Author information

Authors and Affiliations

Authors

Contributions

CRZ, XQQ, and YD involved in organizing the paper, formal analysis, conceptualization, writing the original draft, and writing commentary editing. WQK involved in collecting and organizing the paper and writing the first draft. YHL and XLM involved in writing the first draft and writing commentary editing. HYN and CWW involved in conceptualization and writing the original draft. HY involved in project management and fund raising. HW and YR involved in directing figure design and figure copyright acquisition. KRD and JWW reviewed and edited the final draft. All authors approved the manuscript.

Corresponding authors

Correspondence to Han Yang, Kerong Dai or Jinwu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Qiu, X., Dai, Y. et al. The prospects for bioprinting tumor models: recent advances in their applications. Bio-des. Manuf. 6, 661–675 (2023). https://doi.org/10.1007/s42242-023-00247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-023-00247-1

Keywords

Navigation