Skip to main content
Log in

Rigid-Soft Coupled Robotic Gripper for Adaptable Grasping

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Inspired by the morphology of human fingers, this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue. Different from the current grippers who have multi-point contact or line contact with the target objects, the proposed robotic gripper enables surface contact and leads to flexible grasping and robust holding. The actuated mechanism, which is the palm of proposed gripper, is optimized for excellent operability based on a mathematical model. Soft material selection and rigid skeleton structure of fingers are then analyzed through a series of dynamic simulations by RecurDyn and Adams. After above design process including topology analysis, actuated mechanism optimization, soft material selection and rigid skeleton analysis, the rigid-soft coupled robotic gripper is fabricated via 3D printing. Finally, the grasping and holding capabilities are validated by experiments testing the stiffness of a single finger and the impact resistance of the gripper. Experimental results show that the proposed rigid-soft coupled robotic gripper can adapt to objects with different properties (shape, size, weight and softness) and hold them steadily. It confirms the feasibility of the design procedure, as well as the compliant and dexterous grasping capabilities of proposed rigid-soft coupled gripper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Severinson-Eklundh, K., Green, A., & Hüttenrauch, H. (2003). Social and collaborative aspects of interaction with a service robot. Robotics and Autonomous Systems, 42(3–4), 223–234.

    Article  MATH  Google Scholar 

  2. Kulic, D., & Croft, E. A. (2007). Affective state estimation for human–robot interaction. IEEE Transactions on Robotics, 23(5), 991–1000.

    Article  Google Scholar 

  3. Cui, J. X., Wang, P. F., Sun, T., Ma, S., Ma, S. B., Kang, R. J., & Guo, F. (2022). Design and experiments of a novel quadruped robot with tensegrity legs. Mechanism and Machine Theory, 171, 104781.

    Article  Google Scholar 

  4. Breazeal, C. (2004). Social interactions in HRI: The robot view. IEEE Transactions on Systems, Man, and Cybernetics Part C (Applications and Reviews), 34(2), 181–186.

    Article  Google Scholar 

  5. Belter, J. T., & Dollar, A. M. (2011). Performance characteristics of anthropomorphic prosthetic hands. In 2011 IEEE international conference on rehabilitation robotics (pp. 1–7). Zurich, Switzerland

  6. Chen, K. X., Wang, M., Huo, X. M., Wang, P. F., & Sun, T. (2023). Topology and dimension synchronous optimization design of 5-DoF parallel robots for in-situ machining of large-scale steel components. Mechanism and Machine Theory, 179, 105105.

    Article  Google Scholar 

  7. Yang, S. F., Sun, T., Huang, T., Li, Q. C., & Gu, D. B. (2016). A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mechanism and Machine Theory, 104, 405–419.

    Article  Google Scholar 

  8. Sun, T., Yang, S. F., Huang, T., & Dai, J. S. (2018). A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chinese Journal of Mechanical Engineering, 31, 1–10.

    Article  Google Scholar 

  9. Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., & Biggers, K. (1986). Design of the Utah/MIT dextrous hand. In Proceedings of IEEE international conference on robotics and automation, (pp. 1520–1532). San Francisco, USA

  10. Challoo, R., Johnson, J. P., McLauchlan, R. A., & Omar, S. I. (1994). Intelligent control of a Stanford JPL hand attached to a 4 DOF robot arm. In Proceedings of IEEE international conference on systems, man, and cybernetics, humans, information and technology (pp. 1274–1278). San Antonio, USA

  11. Massa, B., Roccella, S., Carrozza, M. C., & Dario, P. (2002). Design and development of an underactuated prosthetic hand. In Proceedings of IEEE international conference on robotics and automation (pp. 3374–3379). Washington, USA

  12. Townsend, W. (2000). The BarrettHand grasper-programmably flexible part handling and assembly. Industrial Robot, 27(3), 181–188.

    Article  Google Scholar 

  13. Martin, E., Desbiens, A. L., Laliberte, T., & Gosselin, C. (2004). SARAH hand used for space operations on STVF robot. In Proceedings of international conference on intelligent manipulation and grasping (pp. 279–284). Genoa, Italy

  14. Sun, T., & Lian, B. B. (2018). Stiffness and mass optimization of parallel kinematic machine. Mechanism and Machine Theory, 120, 73–88.

    Article  Google Scholar 

  15. Sun, T., Wu, H., Lian, B. B., Qi, Y., & Wang, P. F. (2017). Stiffness modeling, analysis and evaluation of a 5 degree of freedom hybrid manipulator for friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23), 4441–4456.

    Google Scholar 

  16. Gosselin, C. M. (2006). Adaptive robotic mechanical systems: A design paradigm. Journal of Mechanical Design, 128(1), 192–198.

    Article  Google Scholar 

  17. Liu, H., Meusel, P., Hirzinger, G., Jin, M., Liu, Y., & Xie, Z. (2008). The modular multisensory DLR-HIT-Hand: Hardware and software srchitecture. IEEE/ASME Transactions on Mechatronics, 13(4), 61–469.

    Google Scholar 

  18. Liu, B., Jiang, L., & Fan, S. (2022). Hybrid mapping method: From human to robotic hands with dissimilar kinematics. Journal of Bionic Engineering, 19(4), 935–952.

    Article  Google Scholar 

  19. Yang, S., Sun, T., & Huang, T. (2017). Type synthesis of parallel mechanisms having 3T1R motion with variable rotational axis. Mechanism and Machine Theory, 109, 220–230.

    Article  Google Scholar 

  20. Sun, T., & Yang, S. (2019). An approach to formulate the Hessian matrix for dynamic control of parallel robots. IEEE/ASME Transactions on Mechatronics, 24(1), 271–281.

    Article  Google Scholar 

  21. Okamura, A. M., Smaby, N., & Cutkosky, M. R. (2000). An overview of dexterous manipulation. In Proceedings of IEEE international conference on robotics and automation (pp. 255–262). San Francisco, USA

  22. Lin, H., Guo, F., Wang, F., & Jia, Y. B. (2015). Picking up a soft 3D object by “feeling” the grip. The International Journal of Robotics Research, 34(11), 1361–1384.

    Article  Google Scholar 

  23. Xydas, N., Bhagavat, M., & Imin, K. (2000). Study of soft-finger contact mechanics using finite elements analysis and experiments. In Proceedings of IEEE international conference on robotics and automation (pp. 2179–2184). San Francisco, USA

  24. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475.

    Article  Google Scholar 

  25. Yang, Y., Chen, Y., Li, Y., Chen-Michael, Z. Q., & Wei, Y. (2017). Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material. Soft Robotics, 4(2), 147–162.

    Article  Google Scholar 

  26. Lu, Y., Chang, Z., & Lu, Y. (2022). Development of novel hybrid hand formed by a parallel wrist and three soft-flexible fingers. Journal of Bionic Engineering, 19(5), 1349–1358.

    Article  Google Scholar 

  27. Laschi, C., Mazzolai, B., & Cianchetti, M. (2016). Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), eaah3690.

    Article  Google Scholar 

  28. Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., Buehler, M., Kohout, R., Howe, R. D., & Dollar, A. M. (2014). A compliant, underactuated hand for robust manipulation. The International Journal of Robotics Research, 33(5), 736–752.

    Article  Google Scholar 

  29. Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., & Laschi, C. (2012). A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration & Biomimetics, 7(2), 025006.

    Article  Google Scholar 

  30. Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., & Laschi, C. (2014). Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on Robotics, 30(5), 1109–1122.

    Article  Google Scholar 

  31. Deimel, R., & Brock, O. (2013). A compliant hand based on a novel pneumatic actuator. In Proceedings of IEEE international conference on robotics and automation (pp. 2047–2053). Karlsruhe, Germany

  32. Homberg, B. S., Katzschmann, R. K., Dogar, M. R., & Rus, D. (2015). Haptic identification of objects using a modular soft robotic gripper. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 1698–1705). Hamburg, Germany

  33. Bilodeau, R. A., White, E. L., & Kramer, R. K. (2015). Monolithic fabrication of sensors and actuators in a soft robotic gripper. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 2324–2329). Hamburg, Germany

  34. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., & Dario, P. (2012). Soft robot arm inspired by the octopus. Advanced Robotics, 26(7), 709–727.

    Article  Google Scholar 

  35. Rodrigue, H., Wang, W., Han, M. W., Kim, T. J., & Ahn, S. H. (2017). An overview of shape memory alloy-coupled actuators and robots. Soft Robotics, 4(1), 3–15.

    Article  Google Scholar 

  36. Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A., & Whitesides, G. M. (2013). Using explosions to power a soft robot. Angewandte Chemie International Edition, 52(10), 2892–2896.

    Article  Google Scholar 

  37. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., & Laschi, C. (2012). Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 7(2), 025005.

    Article  Google Scholar 

  38. Shian, S., Bertoldi, K., & Clarke, D. R. (2015). Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 27(43), 6814–6819.

    Article  Google Scholar 

  39. Frey, S. T., Haque, A. T., Tutika, R., Krotz, E. V., Lee, C., Haverkamp, C. B., Markvicka, E. J., & Bartlett, M. D. (2022). Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Science Advances, 8(28), eabq1905.

    Article  Google Scholar 

  40. Deimel, R., & Brock, O. (2016). A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1–3), 161–185.

    Article  Google Scholar 

  41. Katzschmann, R. K., Marchese, A. D., & Rus, D. (2015). Autonomous object manipulation using a soft planar grasping manipulator. Soft Robotics, 2(4), 155–164.

    Article  Google Scholar 

  42. Yang, Y., Chen, Y., Li, Y., Chen, M. Z., & Wei, Y. (2017). Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material. Soft Robotics, 4(2), 147–162.

    Article  Google Scholar 

  43. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., & Cianchetti, M. (2015). A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robotics, 2(3), 107–116.

    Article  Google Scholar 

  44. Quigley, M., Salisbury, C., Ng, A. Y., & Salisbury, J. K. (2014). Mechatronic design of an integrated robotic hand. The International Journal of Robotics Research, 33(5), 706–720.

    Article  Google Scholar 

  45. Festo. (2009). BionicTripod with FinGripper. https://www.festo.com/rep/en_corp/assets/pdf/Tripod_en.pdf. Accessed 9 Apr 2023.

  46. Shan, X., & Birglen, L. (2020). Modeling and analysis of soft robotic fingers using the fin ray effect. The International Journal of Robotics Research, 39(14), 1686–1705.

    Article  Google Scholar 

  47. Xu, W., Zhang, H., Yuan, H., & Liang, B. (2021). A compliant adaptive gripper and its intrinsic force sensing method. IEEE Transactions on Robotics, 37(5), 1584–1603.

    Article  Google Scholar 

  48. Kim, Y. J., Song, H., & Maeng, C. Y. (2020). BLT gripper: An adaptive gripper with active transition capability between precise pinch and compliant grasp. IEEE Robotics and Automation Letters, 5(4), 5518–5525.

    Article  Google Scholar 

  49. Zhu, J., Chai, Z., Yong, H., Xu, Y., Guo, C., Ding, H., & Wu, Z. (2023). Bioinspired multimodal multipose hybrid fingers for wide-range force, compliant, and stable grasping. Soft Robotics, 10(1), 30–39.

    Article  Google Scholar 

  50. Wei, Y., Chen, Y., Ren, T., Chen, Q., Yan, C., Yang, Y., & Li, Y. (2016). A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robotics, 3(3), 134–143.

    Article  Google Scholar 

Download references

Acknowledgements

This was supported in part by the National Natural Science Foundation of China under Grant 52275027, 52275028 and 52205028, in part by the Tianjin Science and Technology Planning Project under Grant 20201193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Lian, B. & Song, Y. Rigid-Soft Coupled Robotic Gripper for Adaptable Grasping. J Bionic Eng 20, 2601–2618 (2023). https://doi.org/10.1007/s42235-023-00405-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00405-2

Keywords

Navigation