Skip to main content
Log in

Hybrid Mapping Method: from Human to Robotic Hands with Dissimilar Kinematics

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Mapping grasps from human to anthropomorphic robotic hands is an open issue in research, because the master hand and the slave hand have dissimilar kinematics. This paper proposes a hybrid mapping method to solve this problem. In the proposed method, fingers in the master and the slave hands are divided into vital and synergic fingers according to their contribution to the grasping task. The tip of the vital finger of the master hand is first mapped to that of the slave hand while ensuring that both are in simultaneous contact with the object to be grasped. Following postural synergy theory, joints of the other synergic fingers of the slave hand are then used to generate an anthropomorphic grasping configuration according to the shape of the object to be grasped. Following this, a human-guided impedance controller is used to reduce the pre-grasping error and realize compliant interaction with the environment. The proposed hybrid mapping method can not only generate the posture of the humanoid envelope but can also carry out impedance-adaptive matching. It was evaluated using simulations and an experiment involving an anthropomorphic robotic slave hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics & Automation, 16, 652–662.

    Article  Google Scholar 

  2. Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., Cavallo, A., DeMaria, G., Natale, C., Pirozzi, S., May, C., Ficuciello, F., & Siciliano, B. (2014). The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping. International Journal of Robotics Research, 35, 799–824.

    Article  Google Scholar 

  3. He, C., Xu, X. W., Zheng, X. F., Xiong, C. H., Li, Q. L., Chen, W. B., & Sun, B. Y. (2021). Anthropomorphic reaching movement generating method for human-like upper limb robot. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3107341 Advance online publication.

    Article  Google Scholar 

  4. Chen, W. B., Xiong, C. H., & Yue, S. G. (2016). On configuration trajectory formation in spatiotemporal profile for reproducing human hand reaching movement. IEEE Transactions on Cybernetics, 46, 804–816.

    Article  Google Scholar 

  5. Meeker, C., Rasmussen, T., & Ciocarlie, M. (2018). Intuitive hand teleoperation by novice operators using a continuous teleoperation subspace. In: International Conference on Robotics and Automation, Brisbane, Australia, 5821–5827.

  6. Shahbazi, M., Atashzar, S. F., & Patel, R. V. (2018). A systematic review of multilateral teleoperation systems. IEEE Transactions on Haptics, 11, 338–356.

    Article  Google Scholar 

  7. Chattaraj, R., Bepari, B, & Bhaumik, S. (2014). Grasp mapping for dexterous robot hand: A hybrid approach. In International conference on contemporary computing, Noida, India, pp 242–247.

  8. Speeter, T. H. (1992). Transforming human hand motion for telemanipulation. Presence-Teleoperators and Virtual Environments, 1, 63–79.

    Article  Google Scholar 

  9. Cerulo, I., Ficuciello, F., Lippiello, V., & Siciliano, B. (2017). Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking. Robotics and Autonomous Systems, 89, 75–84.

    Article  Google Scholar 

  10. Wojtara, T., & Nonami, K. (2004). Hand posture detection by neural network and grasp mapping for a master slave hand system. In International conference on intelligent robots and systems, Sendai, Japan, pp 866–871.

  11. Rohling, R. N., & Hollerbach, J. M. (1993). Calibrating the human hand for haptic interfaces. Presence-Teleoperators and Virtual Environments, 2, 281–296.

    Article  Google Scholar 

  12. Rohling, R. N., Hollerbach, J. M., & Jacobsen, S. C. (1993). Optimized fingertip mapping: A general algorithm for robotic hand teleoperation. Presence-Teleoperators and Virtual Environments, 2, 203–220.

    Article  Google Scholar 

  13. Griffin, W. B., Findley, R. P., Turner, M. L., & Cutkosky, M. R. (2000). Calibration and mapping of a human hand for dexterous telemanipulation. In Proceedings of the ASME international mechanical engineering congress & exposition dynamics systems & controls, Orlando, United states, pp 1145–1152.

  14. Meattini, R., Chiaravalli, D., Biagiotti, L., Palli, G., & Melchiorri, C. (2020). Combined joint-Cartesian mapping for simultaneous shape and precision teleoperation of anthropomorphic robotic hands. In 21st IFAC World Congress, Berlin, Germany, pp 10052–10057.

  15. Meattini, R., Chiaravalli, D., Biagiotti, L., Palli, G., & Melchiorri, C. (2021). Exploiting in-hand knowledge in hybrid joint-Cartesian mapping for anthropomorphic robotic hands. IEEE Robotics and Automation Letters, 6, 5517–5524.

    Article  Google Scholar 

  16. Salvietti, G., Meli, L., Gioioso, G., Malvezzi, M., & Prattichizzo, D. (2013). Object-based bilateral telemanipulation between dissimilar kinematic structures. In International conference on intelligent robots and systems, Tokyo, Japan, pp 5451–5456.

  17. Gioioso, G., Salvietti, G., Malvezzi, M., & Prattichizzo, D. (2013). Mapping synergies from human to robotic hands with dissimilar kinematics: An approach in the object domain. IEEE Transactions on Robotics, 29, 825–837.

    Article  Google Scholar 

  18. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18, 10105–10115.

    Article  Google Scholar 

  19. Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. International Journal of Robotics Research, 28, 851–867.

    Article  Google Scholar 

  20. Salvietti, G., Malvezzi, M., Gioioso, G. & Prattichizzo, D. (2014). On the use of homogeneous transformations to map human hand movements onto robotic hands. In IEEE international conference on robotics and automation, Hong Kong, China, pp 5352–5357.

  21. Mavrogiannis, C. I., Bechlioulis, C. P., Liarokapis, M. V. & Kyriakopoulos, K. J. (2014). Task-specific grasp selection for underactuated hands. In IEEE international conference on robotics and automation, Hong Kong, China, pp 3676–3681

  22. Ficuciello, F., Palli, G., Melchiorri, C., & Siciliano, B. (2012) Planning and control during reach to grasp using the three predominant UB hand IV postural synergies. In IEEE international conference on robotics and automation, Saint Paul, Saint Paul, pp 2255–2260.

  23. Meattini, R., Chiaravalli, D., Biagiotti, L., Palli, G., & Melchiorri, C. (2021). Combining unsupervised muscle co-contraction estimation with bio-feedback allows augmented kinesthetic teaching. IEEE Robotics and Automation Letters, 6, 6180–6187.

    Article  Google Scholar 

  24. Wen, R. S., Yuan, K., Wang, Q., Heng, S., & Li, Z. B. (2020). Force-guided high-precision grasping control of fragile and deformable objects using sEMG-based force prediction. IEEE Robotics and Automation Letters, 5, 2762–2769.

    Article  Google Scholar 

  25. Ajoudani, A., Tsagarakis, N. G., & Bicchi, A. (2012). Tele-impedance: Teleoperation with impedance regulation using a body-machine interface. International Journal of Robotics Research, 13, 1642–1656.

    Article  Google Scholar 

  26. Chen, W. B., Wu, S., Zhou, T. C., & Xiong, C. H. (2019). On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton. Bioinspiration & Biomimetics, 14, 016012.

    Article  Google Scholar 

  27. Chen, W. B., Xiong, C. H., Liu, C. L., Li, P. M., & Chen, Y. H. (2019). Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft Robotics, 6, 495–506.

    Article  Google Scholar 

  28. Liu, L. Z., Zhang, Y. R., Liu, G. Y., & Xu, W. L. (2018). Variable motion mapping to enhance stiffness discrimination and identification in robot hand teleoperation. Robotics and Computer-Integrated Manufacturing, 51, 202–208.

    Article  Google Scholar 

  29. Liu, B. C., Jiang, L., Fan, S. W., & Li, C. Y. (2020). A Biomimetic impedance controller for robotic hand variable stiffness grasping. In IEEE international conference on mechatronics and automation, Beijing, China, pp 407–412.

  30. Dimou, D., Santos-Victor, J., & Moreno, P. (2021). Learning conditional postural synergies for dexterous hands: A generative approach based on variational auto-encoders and conditioned on object size and category. In IEEE international conference on robotics and automation, Xi'an, China, pp 4710–4716.

  31. Katyara, S., Ficuciello, F., Caldwell, D. G., Siciliano, B., & Chen, F. (2021). Leveraging kernelized synergies on shared subspace for precision grasping and dexterous manipulation. IEEE Transactions on Cognitive and Developmental Systems. https://doi.org/10.1109/TCDS.2021.3110406 Advance online publication.

    Article  Google Scholar 

  32. Chen, W. B., Xiong, C. H., & Yue, S. G. (2015). Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand. IEEE/ASME Transactions on Mechatronics, 20, 1249–1263.

    Article  Google Scholar 

  33. Santina, C. D., Piazza, C., Grioli, G., Catalano, M. G., & Bicchi, A. (2018). Towards dexterous manipulation with augmented adaptive synergies: The Pisa/IIT SoftHand 2. IEEE Transactions on Robotics, 34, 1141–1156.

    Article  Google Scholar 

  34. Liu, B. C., Jiang, L., Fan, S. W., & Dai, J. H. (2021). Learning grasp configuration through object-specific hand primitives for posture planning of anthropomorphic hands. Frontiers in Neurorobotics, 15, 1–18.

    Google Scholar 

  35. Monforte, M., & Ficuciello, F. (2021). A reinforcement learning method using multifunctional principal component analysis for human-like grasping. IEEE Transactions on Cognitive and Developmental Systems, 13, 132–140.

    Article  Google Scholar 

  36. Tieck, J. C. V., Secker, K., Kaiser, J., Roennau, A., & Dillmann, R. (2021). Soft-grasping with an anthropomorphic robotic hand using spiking neurons. IEEE Robotics and Automation Letters, 6, 2894–2901.

    Article  Google Scholar 

  37. Abbasi, B., Noohi, E., Parastegari, S. & Žefran, M. (2016). Grasp taxonomy based on force distribution. In IEEE international symposium on robot and human interactive communication, New York, United states, pp 1098–1103.

  38. Pozzi, M., Salvietti, G., Bimbo, J., Malvezzi, M., & Prattichizzo, D. (2018). The closure signature: A functional approach to model underactuated compliant robotic hands. IEEE Robotics and Automation Letters, 3, 2206–2213.

    Article  Google Scholar 

  39. Rao, A. B., Krishnan, K., & He, H. (2018). Learning robotic grasping strategy based on natural-language object descriptions. In International conference on intelligent robots and systems, Madrid, Spain, pp 882–887.

  40. Mulatto, S., Formaglio, A., Malvezzi, M., & Prattichizzo, D. (2012). Using postural synergies to animate a low-dimensional hand avatar in haptic simulation. IEEE Transactions on Haptics, 6, 106–116.

    Article  Google Scholar 

  41. Hoppner, H., Joseph, M., & Patrick, M. (2013). Task dependency of grip stiffness-A study of human grip force and grip stiffness dependency during two different tasks with same grip forces. PLoS ONE, 8, e80889.

    Article  Google Scholar 

  42. Fu, Q. S., & Santello, M. (2018). Improving fine control of grasping force during hand–object interactions for a soft synergy-inspired myoelectric prosthetic hand. Frontiers in Neurorobotics, 11, 1–15.

    Article  Google Scholar 

  43. Malvezzi, M., Gioioso, G., Salvietti, G., & Prattichizzo, D. (2015). SynGrasp: A MATLAB toolbox for underactuated and compliant hands. IEEE Robotics & Automation Magazine, 22, 52–68.

    Article  Google Scholar 

  44. Fan, S. W., Gu, H. W., Zhang, Y. F., Jin, M. H., & Liu, H. (2018). Research on adaptive grasping with object pose uncertainty by multi-fingered robot hand. International Journal of Advanced Robotic Systems, 45, 1–16.

    Google Scholar 

  45. Li, R., Wang, H. Y., & Liu, Z. Y. (2021). Survey on mapping human hand motion to robotic hands for teleoperation. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2021.3057992 Advance online publication.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the China National Key Research and Development Program under Grant no. 2020YFC2007801, and in part by the National Natural Science Foundation of China under Grant no. U1813209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Fan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Jiang, L. & Fan, S. Hybrid Mapping Method: from Human to Robotic Hands with Dissimilar Kinematics. J Bionic Eng 19, 935–952 (2022). https://doi.org/10.1007/s42235-022-00187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00187-z

Keywords

Navigation