Skip to main content
Log in

Biological Vibration Damping Strategies and Mechanisms

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Excessive vibration in civil and mechanical systems can lead to structural damage or harmful noise. Structural vibration can be mitigated by reducing the energy of the vibration source or by isolating the external disturbance from the target structure. Depending on the tunability and power consumption of the system, existing vibration control strategies are divided into active, passive and semi-active types, providing a more stable and efficient solution for vibration control. However, conventional damping structures have difficulty in meeting the requirements of wide frequency range and high precision damping under complex operating conditions. Therefore, the design of efficient damping structures is one of the key challenges in the development of vibration control technology. Organisms have evolved over millions of years to effectively damp vibrations through special structures and composite materials to ensure their survival. Opening up damping vibration isolation technology from a bionic perspective can meet the frequency requirements of vibration damping and guarantee higher output accuracy of machinery. This review summarizes the basic principles of vibration control and analyses the vibration control strategies for different damping materials and damping structures. Meanwhile, various models of bio-damped structures are outlined. Moreover, the current status and recent progress of research on bionic damped structures based on bio-vibration control strategies are discussed. Finally, new perspectives on future developments in the field of bionic damped vibration control techniques are also presented. A comprehensive understanding of existing vibration damping mechanisms and new methods of bionic damping design will certainly trigger important applications of precision vibration control in the fields of aerospace, rail transportation and mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2022, Springer Nature Switzerland AG

Fig. 3

Copyright 2022, Elsevier B.V. b The geometrical model of a hyoid [24]. Copyright 2022, Elsevier B.V. c Biologically inspired vibration damping system schematic [27]. Copyright 2022, IOP Publishing

Fig. 4

Copyright 2019, Institute of Physics. a Wide angle swing of the knee joint. b The main muscles and joints of the knee joint. In the figure the muscles which have only one point of attachment are bi-articular. c Schematic diagram of the functional role for the knee joint. d Muscle activation and joint velocity profile (data taken from [47]). This information helps to differentiate between passive and stabilizing effects on the joint. e The figure shows the joint power given by the multiplication of the net torque (not shown) and the velocity. No force or internal reaction force generated without motion is considered. Plot of muscle activation, power and velocity are given with arbitrary units. f Human knee joint structure

Fig. 5
Fig. 6

Copyright 2022, American Physical Society. Copyright 2004, The Royal Society of Chemistry

Fig. 7

Copyright 2022, Elsevier B.V

Fig. 8

Copyright 2023, Elsevier B.V. b Finite element models of conventional honeycomb structures and grapefruit peel-inspired honeycomb structures from different perspectives. Copyright 2023, Elsevier B.V. c Mussels anchor themselves to the surface with tough and self-healing fibers known as byssal threads. Copyright 2023, Elsevier B.V. d The hierarchical structure of byssal threads spans multiple length scales. Each filament consists of a collagen core encapsulated by a stiff cuticle [93]. Copyright 2023, Clearance Center. e Schematic representation of the multiple energy dissipating mechanisms of HDEs responding to external forces [94]. f Synthesis of HDEs. g Demonstration of the excellent attenuation performance of HDEs. Copyright 2022, American Chemical Society

Fig. 9

Copyright 1999–2022, John Wiley & Sons, Inc. Copyright 2022, Elsevier B.V

Fig. 10

Copyright 2022, Elsevier B.V. c The effective stiffness profile (\(\frac{{E}_{1}}{{E}_{0}}\), ranging from 100–2000) and the suture dominance (\(\frac{A}{\sqrt{s}}\), ranging from 0.05–0.53) [108]

Fig. 11

Copyright 2022, Elsevier B.V

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N., & Ajayan, P. M. (2005). Super-compressible foamlike carbon nanotube films. Science, 310(5752), 1307–1310. https://doi.org/10.1126/science.1118957

    Article  Google Scholar 

  2. Xu, M., Futaba, D. N., Yamada, T., Yumura, M., & Hata, K. (2010). Carbon nanotubes with temperature-invariant viscoelasticity from 196 to 1000 °C. Science, 330(6009), 1364–1368. https://doi.org/10.1126/science.1194865

    Article  Google Scholar 

  3. Chung, D. D. L. (2001). Materials for vibration damping. Journal of Materials Science, 36(24), 5733–5737. https://doi.org/10.1023/A:1012999616049

    Article  Google Scholar 

  4. Ren, Z. Y., Huang, J. F., Bai, H. B., Jin, R., Xu, F. Q., & Xu, J. (2021). Potential application of entangled porous titanium alloy metal rubber in artificial lumbar disc prostheses. Journal of Bionic Engineering, 18(3), 584–599. https://doi.org/10.1007/s42235-021-0039-6

    Article  Google Scholar 

  5. Ramsey, D. K., Lamontagne, M., Wretenberg, P. F., Valentin, A., Engstrom, B., & Nemeth, G. (2001). Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clinical Biomechanics, 16(1), 61–70. https://doi.org/10.1016/S0268-0033(00)00065-6

    Article  Google Scholar 

  6. Liu, K., Cheng, L., Zhang, N. B., Pan, H., Fan, X. W., Li, G. F., Zhang, Z. M., Zhao, D., Zhao, J., Yang, X., Wang, Y. M., Bai, R. X., Liu, Y. H., Liu, Z. Y., Wang, S., Gong, X. L., Bao, Z. H., Gu, G. Y., Yu, W., & Yan, X. Z. (2021). Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-bonding. Journal of the American Chemical Society, 143(2), 1162–1170. https://doi.org/10.1021/jacs.0c12119

    Article  Google Scholar 

  7. Khan, S. U., Li, C. Y., Siddiqui, N. A., & Kim, J. K. (2011). Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Composites Science and Technology, 71(12), 1486–1494. https://doi.org/10.1016/j.compscitech.2011.03.022

    Article  Google Scholar 

  8. Pal, G., & Kumar, S. (2016). Modeling of carbon nanotubes and carbon nanotube-polymer composites. Progress in Aerospace Sciences, 80, 33–58. https://doi.org/10.1016/j.paerosci.2015.12.001

    Article  Google Scholar 

  9. Li, Y. P., Kim, H. I., Wei, B. Q., Kang, J., Choi, J. B., Nam, J. D., & Suhr, J. (2015). Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions. Nanoscale, 7(34), 14299–14304. https://doi.org/10.1039/c5nr03581c

    Article  Google Scholar 

  10. Zhao, J. N., Zhang, X. H., Pan, Z. J., & Li, Q. W. (2015). Wide-range tunable dynamic property of carbon-nanotube-based fibers. Advanced Materials Interfaces, 2(10), 1500093. https://doi.org/10.1002/admi.201500093

    Article  Google Scholar 

  11. Chung, D. D. L. (2003). Structural composite materials tailored for damping. Journal of Alloys and Compounds, 355(1–2), 216–223. https://doi.org/10.1016/S0925-8388(03)00233-0

    Article  Google Scholar 

  12. Chandra, R., Singh, S. P., & Gupta, K. (1999). Damping studies in fiber-reinforced composites–a review. Composite Structures, 46(1), 41–51. https://doi.org/10.1016/S0263-8223(99)00041-0

    Article  Google Scholar 

  13. Lakes, R. S. (2002). High damping composite materials: Effect of structural hierarchy. Journal of Composite Materials, 36(3), 287–297. https://doi.org/10.1106/002199802023538

    Article  Google Scholar 

  14. Luo, J. L., Duan, Z. D., Xian, G. J., Li, Q. Y., & Zhao, T. J. (2015). Damping performances of carbon nanotube reinforced cement composite. Mechanics of Advanced Materials and Structures, 22(3), 224–232. https://doi.org/10.1080/15376494.2012.736052

    Article  Google Scholar 

  15. Zhou, X. Q., Yu, D. Y., Shao, X. Y., Zhang, S. Q., & Wang, S. (2016). Research and applications of viscoelastic vibration damping materials: A review. Composite Structures, 136, 460–480. https://doi.org/10.1016/j.compstruct.2015.10.014

    Article  Google Scholar 

  16. Zhao, J. N., Wang, F. L., Zhang, X., Liang, L. J., Yang, X. Q., Li, Q. W., & Zhang, X. H. (2018). Vibration damping of carbon nanotube assembly materials. Advanced Engineering Materials, 20(3), 1700647. https://doi.org/10.1002/adem.201700647

    Article  Google Scholar 

  17. Ruiz-Hitzky, E., Darder, M., Aranda, P., & Ariga, K. (2010). Advances in biomimetic and nanostructured biohybrid materials. Advanced Materials, 22(3), 323–336. https://doi.org/10.1002/adma.200901134

    Article  Google Scholar 

  18. Vincent, J. F. V. (2006). Applications—influence of biology on engineering. Journal of Bionic Engineering, 3, 161–177. https://doi.org/10.1016/S1672-6529(06)60020-6

    Article  Google Scholar 

  19. Oda, J., Sakamoto, J., & Sakano, K. (2006). Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system. JSME International Journal Series A-Solid Mechanics and Material Engineering, 49(3), 390–396. https://doi.org/10.1299/jsmea.49.390

    Article  Google Scholar 

  20. Wang, L. Z., Cheung, J. T. M., Pu, F., Li, D. Y., Zhang, M., & Fan, Y. B. (2011). Why do woodpeckers resist head impact injury: a biomechanical investigation. PLoS ONE, 6(10), e26490. https://doi.org/10.1371/journal.pone.0026490

    Article  Google Scholar 

  21. Schwab, I. R. (2002). Cure for a headache. British Journal of Ophthalmology, 86(8), 843–843. https://doi.org/10.1136/bjo.86.8.843

    Article  Google Scholar 

  22. May, P. R. A., Fuster, J. M., Haber, J., & Hirschman, A. (1979). Woodpecker drilling behavior: An endorsement of the rotational theory of impact brain injury. Archives of Neurology, 36, 370–373. https://doi.org/10.1001/archneur.1979.00500420080011

    Article  Google Scholar 

  23. May, P. R., Fuster, J. M., Newman, P., & Hirschman, A. (1976). Letter: Woodpeckers and head injury. Lancet, 1, 454–455. https://doi.org/10.1016/S0140-6736(76)92675-1

    Article  Google Scholar 

  24. Zhang, Z., Xie, Y. M., Li, Q., Chen, Z. Y., & Zhou, S. W. (2020). A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker’s head. Journal of the Mechanical Behavior of Biomedical Materials, 112, 104107. https://doi.org/10.1016/j.jmbbm.2020.104107

    Article  Google Scholar 

  25. Jung, J. Y., Pissarenko, A., Yaraghi, N. A., Naleway, S. E., Kisailus, D., Meyers, M. A., & McKittrick, J. (2018). A comparative analysis of the avian skull: Woodpeckers and chickens. Journal of the Mechanical Behavior of Biomedical Materials, 84, 273–280. https://doi.org/10.1016/j.jmbbm.2018.05.001

    Article  Google Scholar 

  26. Liu, Y. Z., Qiu, X. M., Ma, H. L., Fu, W. W., & Yu, T. X. (2017). A study of woodpecker’s pecking process and the impact response of its brain. International Journal of Impact Engineering, 108, 263–271. https://doi.org/10.1016/j.ijimpeng.2017.05.016

    Article  Google Scholar 

  27. Yoon, S. H., & Park, S. (2011). A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems. Bioinspiration & Biomimetics, 6(1), 016003. https://doi.org/10.1088/1748-3182/6/1/016003

    Article  Google Scholar 

  28. Shi, X. J., Chen, T. K., Zhang, J. H., Su, B., Cong, Q., & Tian, W. J. (2021). A review of bioinspired vibration control technology. Applied Sciences, 11(22), 10584. https://doi.org/10.3390/app112210584

    Article  Google Scholar 

  29. Zhu, Z. D., Wu, C. W., & Zhang, W. (2014). Frequency analysis and anti-shock mechanism of woodpecker’s head structure. Journal of Bionic Engineering, 11(2), 282–287. https://doi.org/10.1016/S1672-6529(14)60045-7

    Article  Google Scholar 

  30. Chen, Y. Y., & Wang, L. F. (2015). Bio-inspired heterogeneous composites for broadband vibration mitigation. Scientific Reports, 5, 17865. https://doi.org/10.1038/srep17865

    Article  Google Scholar 

  31. Jung, J. Y., Pissarenko, A., Trikanad, A. A., Restrepo, D., Su, F. Y., Marquez, A., Gonzalez, D., Naleway, S. E., Zavattieri, P., & McKittrick, J. (2019). A natural stress deflector on the head? Mechanical and functional evaluation of the woodpecker skull bones. Advanced Theory and Simulations, 2(4), 1800152. https://doi.org/10.1002/adts.201800152

    Article  Google Scholar 

  32. Jung, J. Y., Naleway, S. E., Yaraghi, N. A., Herrera, S., Sherman, V. R., Bushong, E. A., Ellisman, M. H., Kisailus, D., & McKittrick, J. (2016). Structural analysis of the tongue and hyoid apparatus in a woodpecker. Acta Biomaterialia, 37, 1–13. https://doi.org/10.1016/j.actbio.2016.03.030

    Article  Google Scholar 

  33. Ni, Y. K., Wang, L. Z., Liu, X. Y., Zhang, H. Q., Lin, C. Y., & Fan, Y. B. (2017). Micro-mechanical properties of different sites on woodpecker’s skull. Computer Methods in Biomechanics and Biomedical Engineering, 20(14), 1483–1493. https://doi.org/10.1080/10255842.2017.1378648

    Article  Google Scholar 

  34. Yoon, S. H., Roh, J. E., & Kim, K. L. (2009). Woodpecker-inspired shock isolation by microgranular bed. Journal of Physics D-Applied Physics, 42(3), 035501. https://doi.org/10.1088/0022-3727/42/3/035501

    Article  Google Scholar 

  35. Mao, H. B., Huang, Q. B., Wang, J. L., & Zhu, M. (2014). An analysis of shock isolation characteristics of a head of a woodpecker and its application to a bionic helmet. Journal of Vibroengineering, 16(4), 1821–1830.

    Google Scholar 

  36. Biju, B., Ramesh, A., Krishnan, A. R., Nath, A. G., & Francis, C. J. Damping characteristics of woodpecker inspired layered shock absorbing structures. In Proceedings of the International Conference on the Science and Technology of Advanced Materials (STAM), New Delhi, INDIA, Nov 20–21, 2019; pp. 140–143. https://doi.org/10.1016/j.matpr.2019.12.187

  37. Zhu, Z. D., Zhang, W., & Wu, C. W. (2014). Energy conversion in woodpecker on successive peckings and its role on anti-shock protection of brain. Science China Technological Sciences, 57, 1269–1275. https://doi.org/10.1007/s11431-014-5582-5

    Article  Google Scholar 

  38. Vincent, J. F., Sahinkaya, M. N., & O’Shea, W. (2007). A woodpecker hammer. Journal of Mechanical Engineering Science, 221(10), 1141–1147. https://doi.org/10.1243/09544062JMES574

    Article  Google Scholar 

  39. Lee, D. V., Isaacs, M. R., Higgins, T. E., Biewener, A. A., & McGowan, C. P. (2014). Scaling of the spring in the leg during bouncing gaits of mammals. Integrative and Comparative Biology, 54(6), 1099–1108. https://doi.org/10.1093/icb/icu114

    Article  Google Scholar 

  40. Beard, D. J., Harris, K., Dawson, J., Doll, H., Murray, D. W., Carr, A. J., & Price, A. J. (2015). Meaningful changes for the Oxford hip and knee scores after joint replacement surgery. Journal of Clinical Epidemiology, 68(1), 73–79. https://doi.org/10.1016/j.jclinepi.2014.08.009

    Article  Google Scholar 

  41. Wang, W., Cao, J. Y., Zhang, N., Lin, J., & Liao, W. H. (2017). Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Conversion and Management, 132, 189–197. https://doi.org/10.1016/j.enconman.2016.11.026

    Article  Google Scholar 

  42. Oh, K. J., Ko, Y. B., Bae, J. H., Yoon, S. T., & Kim, J. G. (2016). Analysis of knee joint line obliquity after high tibial osteotomy. Journal of Knee Surgery, 29(8), 649–657. https://doi.org/10.1055/s-0036-1571430

    Article  Google Scholar 

  43. Winter, D. A., MacKinnon, C. D., Ruder, G. K., & Wieman, C. (1993). An integrated EMG/biomechanical model of upper body balance and posture during human gait. Progress in Brain Research, 97, 359–367. https://doi.org/10.1016/S0079-6123(08)62295-5

    Article  Google Scholar 

  44. Azocar, A. F., Shorter, A. L., & Rouse, E. J. (2019). Damping perception during active ankle and knee movement. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(2), 198–206. https://doi.org/10.1109/TNSRE.2019.2894156

    Article  Google Scholar 

  45. Seitz, A. M., Schwer, J., de Roy, L., Warnecke, D., Ignatius, A., & Durselen, L. (2022). Knee joint menisci are shock absorbers: a biomechanical in-vitro study on porcine stifle joints. Frontiers in Bioengineering and Biotechnology, 10(4), 837554. https://doi.org/10.3389/fbioe.2022.837554

    Article  Google Scholar 

  46. Torricelli, D., Gonzalez, J., Weckx, M., Jimenez-Fabian, R., Vanderborght, B., Sartori, M., Dosen, S., Farina, D., Lefeber, D., & Pons, J. L. (2016). Human-like compliant locomotion: state of the art of robotic implementations. Bioinspiration & Biomimetics, 11(5), 051002. https://doi.org/10.1088/1748-3190/11/5/051002

    Article  Google Scholar 

  47. Winter, D.A. (1991). Biomechanics and motor control of human gait: normal, elderly and pathological - 2nd edition. Transportation Research Board Books

  48. Fanelli, G.C. (2018). Knee dislocation and multiple ligament injuries of the knee. Sports Medicine and Arthroscopy Review 26(4), 150–152. https://doi.org/10.1097/JSA.0000000000000220

    Article  Google Scholar 

  49. Vuillerme, N., Danion, F., Forestier, N., & Nougier, V. (2002). Postural sway under muscle vibration and muscle fatigue in humans. Neuroscience Letters, 333(2), 131–135. https://doi.org/10.1016/S0304-3940(02)00999-0

    Article  Google Scholar 

  50. Baumann, F., Krutsch, W., Worlicek, M., Kerschbaum, M., Zellner, J., Schmitz, P., Nerlich, M., & Tibesku, C. (2018). Reduced joint-awareness in bicruciate-retaining total knee arthroplasty compared to cruciate-sacrificing total knee arthroplasty. Archives of Orthopaedic and Trauma Surgery, 138(2), 273–279. https://doi.org/10.1007/s00402-017-2839-z

    Article  Google Scholar 

  51. Wakeling, J. M., & Nigg, B. M. (2001). Modification of soft tissue vibrations in the leg by muscular activity. Journal of Applied Physiology, 90(2), 412–420. https://doi.org/10.1152/jappl.2001.90.2.412

    Article  Google Scholar 

  52. Reynolds, R. J., Walker, P. S., & Buza, J. (2017). Mechanisms of anterior-posterior stability of the knee joint under load-bearing. Journal of Biomechanics, 57, 39–45. https://doi.org/10.1016/j.jbiomech.2017.03.016

    Article  Google Scholar 

  53. Witte, T. H., Knill, K., & Wilson, A. A. (2004). Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus). Journal of Experimental Biology, 207(21), 3639–3648. https://doi.org/10.1242/jeb.01182

    Article  Google Scholar 

  54. Bian, J., & Jing, X. J. (2019). Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mechanical Systems and Signal Processing, 125, 21–51. https://doi.org/10.1016/j.ymssp.2018.02.014

    Article  Google Scholar 

  55. Zeng, R., Wen, G. L., Zhou, J. X., & Zhao, G. (2021). Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mechanica Sinica, 37(7), 1152–1167. https://doi.org/10.1007/s10409-021-01070-6

    Article  MathSciNet  Google Scholar 

  56. Niu, M. Q., & Chen, L. Q. (2022). Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mechanical Systems and Signal Processing, 179, 109348. https://doi.org/10.1016/j.ymssp.2022.109348

    Article  Google Scholar 

  57. Wilson, A. M., McGuigan, M. P., Fouracre, L., & MacMahon, L. (2001). The force and contact stress on the navicular bone during trot locomotion in sound horses and horses with navicular disease. Equine Veterinary Journal, 33(2), 159–165. https://doi.org/10.1111/j.2042-3306.2001.tb00594.x

    Article  Google Scholar 

  58. De Cocq, P., Mooren, M., Dortmans, A., Van Weeren, P. R., Timmerman, M., Muller, M., & Van Leeuwen, J. L. (2010). Saddle and leg forces during lateral movements in dressage. Equine Veterinary Journal, 42, 644–649. https://doi.org/10.1111/j.2042-3306.2010.00201.x

    Article  Google Scholar 

  59. Wakeling, J. M., Liphardt, A. M., & Nigg, B. M. (2003). Muscle activity reduces soft-tissue resonance at heel-strike during walking. Journal of Biomechanics, 36(12), 1761–1769. https://doi.org/10.1016/S0021-9290(03)00216-1

    Article  Google Scholar 

  60. Wilson, A. M., McGuigan, M. P., Su, A., & Van Den Bogert, A. J. (2001). Horses damp the spring in their step. Nature, 414(6866), 895–899. https://doi.org/10.1038/414895a

    Article  Google Scholar 

  61. Meyers, M. A., Chen, P. Y., Lin, A. Y., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002

    Article  Google Scholar 

  62. Bechtle, S., Ang, S. F., & Schneider, G. A. (2010). On the mechanical properties of hierarchically structured biological materials. Biomaterials, 31(25), 6378–6385. https://doi.org/10.1016/j.biomaterials.2010.05.044

    Article  Google Scholar 

  63. Xu, Z. D., Chen, Z. H., Huang, X. H., Zhou, C. Y., Hu, Z. W., Yang, Q. H., & Gai, P. P. (2019). Recent advances in multi-dimensional vibration mitigation materials and devices. Frontiers in Materials, 6, 143. https://doi.org/10.3389/fmats.2019.00143

    Article  Google Scholar 

  64. Deng, K., Kovalev, A., Rajabi, H., Schaber, C. F., Dai, Z. D., & Gorb, S. N. (2022). The damping properties of the foam-filled shaft of primary feathers of the pigeon Columba livia. Science of Nature, 109, 1. https://doi.org/10.1007/s00114-021-01773-7

    Article  Google Scholar 

  65. Meng, J., & Sun, D. G. (2021). Research on vibration suppression of wind turbine blade with a multi-layer porous damping structure based on bamboo wall microstructure. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 153. https://doi.org/10.1007/s40430-021-02888-8

    Article  Google Scholar 

  66. Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378, 241–241. https://doi.org/10.1038/378241a0

    Article  Google Scholar 

  67. Sun, H. W., Du, X. W., & Pai, P. F. (2010). Theory of metamaterial beams for broadband vibration absorption. Journal of Intelligent Material Systems and Structures, 21(11), 1085–1101. https://doi.org/10.1177/1045389X10375637

    Article  Google Scholar 

  68. Morandi, F., Miniaci, M., Marzani, A., Barbaresi, L., & Garai, M. (2016). Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties. Applied Acoustics, 114, 294–306. https://doi.org/10.1016/j.apacoust.2016.07.028

    Article  Google Scholar 

  69. Puglisi, G., & Pugno, N. M. (2022). A new concept for superior energy dissipation in hierarchical materials and structures. International Journal of Engineering Science, 176, 103673. https://doi.org/10.1016/j.ijengsci.2022.103673

    Article  MathSciNet  MATH  Google Scholar 

  70. Sun, S. Y. M., Sheng, Y. L., Feng, S. S., & Lu, T. J. (2021). Heat transfer efficiency of hierarchical corrugated sandwich panels. Composite Structures, 272, 114195. https://doi.org/10.1016/j.compstruct.2021.114195

    Article  Google Scholar 

  71. Grohlich, M., Lang, A., Boswald, M., & Meier, J. (2021). Viscoelastic damping design-Thermal impact on a constrained layer damping treatment. Materials & Design, 207, 109885. https://doi.org/10.1016/j.matdes.2021.109885

    Article  Google Scholar 

  72. Miniaci, M., Krushynska, A., Gliozzi, A. S., Kherraz, N., Bosia, F., & Pugno, N. M. (2018). Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Physical Review Applied, 10(2), 024012. https://doi.org/10.1103/PhysRevApplied.10.024012

    Article  Google Scholar 

  73. Lei, M., Hamel, C. M., Yuan, C., Lu, H. B., & Qi, H. J. (2018). 3D printed two-dimensional periodic structures with tailored in-plane dynamic responses and fracture behaviors. Composites Science and Technology, 159, 189–198. https://doi.org/10.1016/j.compscitech.2018.02.024

    Article  Google Scholar 

  74. Wang, P., Casadei, F., Shan, S. C., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301. https://doi.org/10.1103/PhysRevLett.113.014301

    Article  Google Scholar 

  75. Sumper, M., & Kroger, N. (2004). Silica formation in diatoms: The function of long-chain polyamines and silaffins. Journal of Materials Chemistry, 14(14), 2059–2065. https://doi.org/10.1039/b401028k

    Article  Google Scholar 

  76. Jia, Z. A., Yu, Y., Hou, S. Y., & Wang, L. F. (2019). Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids, 125, 178–197. https://doi.org/10.1016/j.jmps.2018.12.015

    Article  Google Scholar 

  77. Wang, D., Zhang, H., Guo, J., Cheng, B. C., Cao, Y., Lu, S. J., Zhao, N., & Xu, J. (2016). Biomimetic gradient polymers with enhanced damping capacities. Macromolecular Rapid Communications, 37(7), 655–661. https://doi.org/10.1002/marc.201500637

    Article  Google Scholar 

  78. Bührig-Polaczek, A., Fleck, C., Speck, T., Schüler, P., Fischer, S. F., Caliaro, M., & Thielen, M. (2016). Biomimetic cellular metals—using hierarchical structuring for energy absorption. Bioinspiration & Biomimetics, 11(4), 045002. https://doi.org/10.1088/1748-3190/11/4/045002

    Article  Google Scholar 

  79. Fischer, S. F., Thielen, M., Loprang, R. R., Seidel, R., Fleck, C., Speck, T., & Bührig-Polaczek, A. (2010). Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Advanced Engineering Materials, 12(12), B658–B663. https://doi.org/10.1002/adem.201080065

    Article  Google Scholar 

  80. Thielen, M., Schmitt, C. N. Z., Eckert, S., Speck, T., & Seidel, R. (2013). Structure-function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspiration & Biomimetics, 8(2), 025001. https://doi.org/10.1088/1748-3182/8/2/025001

    Article  Google Scholar 

  81. Zhang, W., Yin, S., Yu, T. X., & Xu, J. (2019). Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineering, 125, 163–172. https://doi.org/10.1016/j.ijimpeng.2018.11.014

    Article  Google Scholar 

  82. Trapaidze, A., D’Antuono, M., Fratzl, P., & Harrington, M. J. (2018). Exploring mussel byssus fabrication with peptide-polymer hybrids: Role of pH and metal coordination in self-assembly and mechanics of histidine-rich domains. European Polymer Journal, 109, 229–236. https://doi.org/10.1016/j.eurpolymj.2018.09.053

    Article  Google Scholar 

  83. Harrington, M. J., & Waite, J. H. (2007). Holdfast heroics: Comparing the molecular and mechanical properties of Mytilus californianus byssal threads. Journal of Experimental Biology, 210(24), 4307–4318. https://doi.org/10.1242/jeb.009753

    Article  Google Scholar 

  84. Hassenkam, T., Gutsmann, T., Hansma, P., Sagert, J., & Waite, J. H. (2004). Giant bent-core mesogens in the thread forming process of marine mussels. Biomacromolecules, 5(4), 1351–1355. https://doi.org/10.1021/bm049899t

    Article  Google Scholar 

  85. Krauss, S., Metzger, T. H., Fratzl, P., & Harrington, M. J. (2013). Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules, 14(5), 1520–1528. https://doi.org/10.1021/bm4001712

    Article  Google Scholar 

  86. Arnold, A. A., Byette, F., Séguin-Heine, M. O., LeBlanc, A., Sleno, L., Tremblay, R., Pellerin, C., & Marcotte, I. (2013). Solid-state NMR structure determination of whole anchoring threads from the blue mussel Mytilus edulis. Biomacromolecules, 14(1), 132–141. https://doi.org/10.1021/bm301493u

    Article  Google Scholar 

  87. Hagenau, A., Papadopoulos, P., Kremer, F., & Scheibel, T. (2011). Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. Journal of Structural Biology, 175(3), 339–347. https://doi.org/10.1016/j.jsb.2011.05.016

    Article  Google Scholar 

  88. Bertoldi, K., & Boyce, M. C. (2007). Mechanics of the hysteretic large strain behavior of mussel byssus threads. Journal of Materials Science, 42(21), 8943–8956. https://doi.org/10.1007/s10853-007-1649-z

    Article  Google Scholar 

  89. Hagenau, A., Scheidt, H. A., Serpell, L., Huster, D., & Scheibel, T. (2009). Structural analysis of proteinaceous components in byssal threads of the mussel Mytilus galloprovincialis. Macromolecular Bioscience, 9(2), 162–168. https://doi.org/10.1002/mabi.200800271

    Article  Google Scholar 

  90. Holten-Andersen, N., & Waite, J. H. (2008). Mussel-designed protective coatings for compliant substrates. Journal of Dental Research, 87(8), 701–709. https://doi.org/10.1177/154405910808700808

    Article  Google Scholar 

  91. Monnier, C. A., DeMartini, D. G., & Waite, J. H. (2018). Intertidal exposure favors the soft-studded armor of adaptive mussel coatings. Nature Communications, 9, 3424. https://doi.org/10.1038/s41467-018-05952-5

    Article  Google Scholar 

  92. Valois, E., Hoffman, C., Demartini, D. G., & Waite, J. H. (2019). The thiol-rich interlayer in the shell/core architecture of mussel byssal threads. Langmuir, 35(48), 15985–15991. https://doi.org/10.1021/acs.langmuir.9b01844

    Article  Google Scholar 

  93. Areyano, M., Valois, E., Carvajal, I. S., Rajkovic, I., Wonderly, W. R., Kossa, A., McMeeking, R. M., & Waite, J. H. (2022). Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms. Journal of the Royal Society Interface, 19(188), 20210828. https://doi.org/10.1098/rsif.2021.0828

    Article  Google Scholar 

  94. Hou, Y. J., Peng, Y., Li, P., Wu, Q., Zhang, J. Q., Li, W. H., Zhou, G. W., & Wu, J. R. (2022). Bioinspired design of high vibration-damping supramolecular elastomers based on multiple energy-dissipation mechanisms. ACS Applied Materials & Interfaces, 14(30), 35097–35104. https://doi.org/10.1021/acsami.2c07604

    Article  Google Scholar 

  95. Liu, Z. Q., Zhang, Z. F., & Ritchie, R. O. (2018). On the materials science of nature’s arms race. Advanced Materials, 30(32), 1705220. https://doi.org/10.1002/adma.201705220

    Article  Google Scholar 

  96. Naleway, S. E., Porter, M. M., McKittrick, J., & Meyers, M. A. (2015). Structural design elements in biological materials: Application to bioinspiration. Advanced Materials, 27(37), 5455–5476. https://doi.org/10.1002/adma.201502403

    Article  Google Scholar 

  97. Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14, 23–36. https://doi.org/10.1038/nmat4089

    Article  Google Scholar 

  98. Raut, M. S., & Gopalakrishnan, S. (2021). Elastic and viscoelastic flexural wave motion in woodpecker-beak-inspired structures. Bioinspiration & Biomimetics, 16(4), 046021. https://doi.org/10.1088/1748-3190/abf745

    Article  Google Scholar 

  99. Byron, C., Segreti, M., Hawkinson, K., Herman, K., & Patel, S. (2018). Dietary material properties shape cranial suture morphology in the mouse calvarium. Journal of Anatomy, 233(6), 807–813. https://doi.org/10.1111/joa.12888

    Article  Google Scholar 

  100. Gao, C., Hasseldine, B. P. J., Li, L., Weaver, J. C., & Li, Y. N. (2018). Amplifying strength, toughness, and auxeticity via wavy sutural tessellation in plant seedcoats. Advanced Materials, 30(36), 1800579. https://doi.org/10.1002/adma.201800579

    Article  Google Scholar 

  101. Yoshimura, K., Kobayashi, R., Ohmura, T., Kajimoto, Y., & Miura, T. (2016). A new mathematical model for pattern formation by cranial sutures. Journal of Theoretical Biology, 408, 66–74. https://doi.org/10.1016/j.jtbi.2016.08.003

    Article  MATH  Google Scholar 

  102. Alheit, B., Bargmann, S., & Reddy, B. D. (2020). Computationally modelling the mechanical behaviour of turtle shell sutures-A natural interlocking structure. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103973. https://doi.org/10.1016/j.jmbbm.2020.103973

    Article  Google Scholar 

  103. Lee, N., Horstemeyer, M. F., Rhee, H., Nabors, B., Liao, J., & Williams, L. N. (2014). Hierarchical multiscale structure–property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of the Royal Society Interface, 11(96), 20140274. https://doi.org/10.1098/rsif.2014.0274

    Article  Google Scholar 

  104. Chen, M. L., Hu, N., Zhou, C., Lin, X. K., Xie, H., & He, Q. (2017). The hierarchical structure and mechanical performance of a natural nanocomposite material: The turtle shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 97–104. https://doi.org/10.1016/j.colsurfa.2017.01.063

    Article  Google Scholar 

  105. Yu, Z. L., Liu, J. J., & Wei, X. D. (2020). Achieving outstanding damping performance through bio-inspired sutural tessellations. Journal of the Mechanics and Physics of Solids, 142, 104010. https://doi.org/10.1016/j.jmps.2020.104010

    Article  MathSciNet  Google Scholar 

  106. Achrai, B., & Wagner, H. D. (2015). The red-eared slider turtle carapace under fatigue loading: The effect of rib-suture arrangement. Materials Science and Engineering C-Materials for Biological Applications, 53, 128–133. https://doi.org/10.1016/j.msec.2015.04.040

    Article  Google Scholar 

  107. Achrai, B., & Wagner, H. D. (2013). Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomaterialia, 9(4), 5890–5902. https://doi.org/10.1016/j.actbio.2012.12.023

    Article  Google Scholar 

  108. Gao, C., & Li, Y. N. (2019). Mechanical model of bio-inspired composites with sutural tessellation. Journal of the Mechanics and Physics of Solids, 122, 190–204. https://doi.org/10.1016/j.jmps.2018.09.015

    Article  MathSciNet  Google Scholar 

  109. Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E., & Fratzl, P. (2003). Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5597–5600. https://doi.org/10.1073/pnas.0631609100

    Article  Google Scholar 

  110. Ji, B. H., & Gao, H. J. (2004). Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52(9), 1963–1990. https://doi.org/10.1016/j.jmps.2004.03.006

    Article  MATH  Google Scholar 

  111. Liu, J. J., Hai, X. S., Zhu, W. Q., & Wei, X. D. (2018). Optimization of damping properties of staggered composites through microstructure design. Journal of Applied Mechanics, 85(10), 101002. https://doi.org/10.1115/1.4040538

    Article  Google Scholar 

  112. Yan, G., Zou, H. X., Wang, S., Zhao, L. C., Wu, Z. Y., & Zhang, W. M. (2021). Bio-inspired vibration isolation: methodology and design. Applied Mechanics Reviews, 73(2), 020801. https://doi.org/10.1115/1.4049946

    Article  Google Scholar 

  113. Xu, Z. D., Li, S. D., Shah, P. A. A., & Lu, Y. (2019). Editorial: Vibration mitigation materials and structures. Frontiers in Materials, 6, 229. https://doi.org/10.3389/fmats.2019.00229

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (No. 2018YFA0703300), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 52021003), National Natural Science Foundation of China (No. 51835006、51875244、52105298、52105301 and U19A20103), China Postdoctoral Science Foundation (No. 2021M701386, 2022T150258), the Open Project of Key Laboratory for Cross-Scale Micro and Nano Manufacturing (Ministry of Education) of Changchun University of Science and Technology (No. CMNM-KF202106).

Author information

Authors and Affiliations

Authors

Contributions

Investigation, JL; resources, ZM and BL; data curation, JZ.; writing—original draft preparation, HZ; writing—review and editing, ZW and SN; supervision, ZH and LR. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ze Wang or Zhiwu Han.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, J., Wang, Z. et al. Biological Vibration Damping Strategies and Mechanisms. J Bionic Eng 20, 1417–1433 (2023). https://doi.org/10.1007/s42235-023-00366-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00366-6

Keywords

Navigation