Skip to main content
Log in

Investigation on vibration mitigation methodology with synergistic friction and electromagnetic damping energy dissipation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Friction dampers are widely used in vibration control of mechanical and civil architectures as a highly robust contact-based energy dissipation strategy. The energy dissipation principle of electromagnetic dampers is to convert the mechanical energy of vibration into electrical energy through a mechanical–magnetic–electric coupling mechanism and dissipate it through an external load circuit or store it in a battery or capacitor. It should be noted that the frictional energy dissipation is displacement dependent, while the electromagnetic energy dissipation is velocity dependent; hence, a synergistic energy dissipation with a combination of frictional and electromagnetic elements can be implemented to obtain satisfactory vibration suppression. This work presents a bi-stable energy scavenging inspired dynamic vibration absorber (DVA) consisting of negative stiffness spring components, electromagnetic conversion elements and friction pairs. The multiple periodic inter-well motion and chaotic motion are understood to illuminate the efficient energy shunt contributed by the bi-stable mechanism. The effects of mass ratio, potential barrier height and friction force on the energy scavenging and vibration suppression performance of this proposed prototype are parametrically analyzed. Numerical simulations have found that the bi-stable DVA with small mass ratio has a significant attenuation effect on the vibration energy of the host structure excited by harmonic excitation or transient shocks. The results indicate that an increase in the barrier height of the bi-stable oscillator leads to an increase in the optimal mass ratio required to achieve optimal energy dissipation efficiency. The small mass ratio bi-stable damper can achieve the best vibration suppression performance by actively regulating the friction force according to the change of ambient vibration. In addition, it is evident that the presence of critical friction minimizes the vibration displacement and energy of the host structure. However, when the friction force exceeds the critical threshold, the dynamic response of the host structure is amplified and the vibration energy increases, which is not conducive to vibration control. Therefore, implementing an appropriate friction force can improve the devastating dynamic response of the structure and facilitate the conversion of vibration energy into available energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data in this work will be made available on reasonable request from the corresponding author.

Abbreviations

m 1 :

Mass of the host structure, kg

m 2 :

Mass of the bi-stable DVA, kg

b 1 :

Linear viscous damping of the host structure, N s/m

b 2 :

Linear viscous damping in the coupling, N s/m

k 1 :

Linear stiffness of the host structure, N/m

k 3 :

Linear stiffness term of the bi-stable DVA, N/m

k 4 :

Cubic stiffness term of the bi-stable DVA, N/m3

k f :

The grounded stiffness of the bi-stable DVA, N/m

b f :

The grounded friction damping of the bi-stable DVA, N s/m

R c :

Coil resistance, Ω

R L :

Load resistance, Ω

k e :

Transduction factor, T m

b e :

Electromechanical damping coefficient, N s/m

μ :

Mass ratio, 1

λ :

Dimensionless linear viscous damping term of the host structure, 1

ζ :

Dimensionless linear viscous damping term in the coupling, 1

β :

Dimensionless electromechanical damping coefficient term, 1

ξ :

Dimensionless negative linear stiffness of the bi-stable DVA, 1

ξ f :

Dimensionless grounded stiffness of the bi-stable DVA, 1

f v :

The nominal friction force, N

f c :

The Coulomb friction force, N

f s :

The maximum static friction force, N

v s :

The Stribeck speed, m/s

f ext :

The sum of all the external forces except friction, N

F n :

The normal force of contact interface, N

χ :

The empirical constant, 1

η :

The lubricant viscosity, Pa s

h :

The film thickness, m

p :

The film pressure, Pa

τ :

The dimensionless time, 1

α :

Dimensionless distance between adjacent potential wells, 1

P :

The harvested power, W

γ :

Dimensionless force coefficient term, 1

y 1 :

Displacement of the primary system, m

y 2 :

Displacement of the bi-stable DVA mass, m

F :

Amplitude of harmonic force, N

ω :

Circular frequency of harmonic force, rad/s

ω n :

Natural frequency of the primary system, rad/s

Ω:

The frequency ratio, 1

A :

Displacement of the primary system, m

E k :

Remaining kinetic energy of the host structure, J

Y r :

Amplitude of the host structure, m

V 0 :

Initial velocity of an impulse, m/s

\(\eta_{{\text{h}}}\) :

Efficiency of energy harvesting, %

\(\eta_{{\text{k}}}\) :

Remaining kinetic energy ratio of the primary system, %

E h :

The total harvested energy, J

DVA:

Dynamic vibration absorber

NES:

Nonlinear energy sink

BMPA:

Bi-stable magneto-pieozelastic absorber

VAEH:

Vibration absorber and energy harvester

SPL:

Dound pressure level

SAFD:

Semi-active friction damper

LCFD:

Leverage-type controllable friction damper

EHL:

Elastohydrodynamic lubrication

References

  1. Baeg, K.-J., Lee, J.: Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv. Mater. Technol. 5, 2000071 (2020)

    Google Scholar 

  2. Wang, L., Jiang, K., Shen, G.: Wearable, implantable, and interventional medical devices based on smart electronic skins. Adv. Mater. Technol. 6(6), 2100107 (2021)

    Google Scholar 

  3. Wang, Q., Ruan, T., Xu, Q., et al.: Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy 89, 106324 (2021)

    Google Scholar 

  4. Yu, Y., Qiao, G., Ou, J.: Self-powered wireless corrosion monitoring sensors and networks. IEEE Sens. J. 10(12), 1901–1902 (2010)

    Google Scholar 

  5. Alavi, A.H., Hasni, H., Lajnef, N., et al.: Damage detection using self-powered wireless sensor data: an evolutionary approach. Measurement 82, 254–283 (2016)

    Google Scholar 

  6. Yildirim, T., Ghayesh, M.H., Li, W., et al.: A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)

    Google Scholar 

  7. Fan, K., Liu, J., Wei, D., et al.: A cantilever-plucked and vibration-driven rotational energy harvester with high electric outputs. Energy Convers. Manage. 244, 114504 (2021)

    Google Scholar 

  8. Heidari, H., Monjezi, B.: Vibration control of imbalanced Jeffcott rotor by virtual passive dynamic absorber with optimal parameter values. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 232(23), 4278–4288 (2018)

    Google Scholar 

  9. Tso, M.H., Yuan, J., Wong, W.O.: Hybrid vibration absorber with detached design for global vibration control. J. Vib. Control 23(20), 3414–3430 (2017)

    Google Scholar 

  10. Mani, Y., Senthilkumar, M.: Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications. J. Vib. Control 21(9), 1838–1847 (2015)

    Google Scholar 

  11. Hunt, J.B., Nissen, J.C.: The broadband dynamic vibration absorber. J. Sound Vib. 83(4), 573–578 (1982)

    Google Scholar 

  12. Sun, S.S., Yildirim, T., Wu, J., et al.: Design and verification of a hybrid nonlinear MRE vibration absorber for controllable broadband performance. Smart Mater. Struct. 26(9), 095039 (2017)

    Google Scholar 

  13. Wang, F., Sun, X., Meng, H., et al.: Tunable broadband low-frequency band gap of multiple-layer metastructure induced by time-delayed vibration absorbers. Nonlinear Dyn. 107(3), 1903–1918 (2022)

    Google Scholar 

  14. Niu, M.Q., Chen, L.Q.: Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Process. 179, 109348 (2022)

    Google Scholar 

  15. Niu, M.Q., Chen, L.Q.: Nonlinear vibration isolation via a compliant mechanism and wire ropes. Nonlinear Dyn. 107(2), 1687–1702 (2022)

    Google Scholar 

  16. Ahmadabadi, Z.N.: Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment. J. Sound Vib. 443, 139–154 (2019)

    Google Scholar 

  17. Huang, X., Yang, B.: Improving energy harvesting from impulsive excitations by a nonlinear tunable bi-stable energy harvester. Mech. Syst. Signal Process. 158, 107797 (2021)

    Google Scholar 

  18. Pilipchuk, V.N., Polczyński, K., Bednarek, M., et al.: Guidance of the resonance energy flow in the mechanism of coupled magnetic pendulums. Mech. Mach. Theory 176, 105019 (2022)

    Google Scholar 

  19. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Google Scholar 

  20. Qiu, D., Li, T., Seguy, S., et al.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018)

    Google Scholar 

  21. Zhang, Y.W., Zhang, Z., Chen, L.Q., et al.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82(1), 61–71 (2015)

    MathSciNet  Google Scholar 

  22. Kani, M., Khadem, S.E., Pashaei, M.H., et al.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1), 1–22 (2016)

    MathSciNet  Google Scholar 

  23. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333(19), 4444–4457 (2014)

    Google Scholar 

  24. Huang, X., Zhong, T.: Hydrokinetic energy harvesting from flow-induced vibration of a hollow cylinder attached with a bi-stable energy harvester. Energy Convers. Manage. 278, 116718 (2023)

    Google Scholar 

  25. Huang, X., Yang, B.: Towards novel energy shunt inspired vibration suppression techniques: principles, designs and applications. Mech. Syst. Signal Process. 182, 109496 (2023)

    Google Scholar 

  26. Huang, X.: Stochastic resonance in a piecewise bistable energy harvesting model driven by harmonic excitation and additive Gaussian white noise. Appl. Math. Model. 90, 505–526 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Huang, X., Yang, B.: Investigation on the energy trapping and conversion performances of a multi-stable vibration absorber. Mech. Syst. Signal Process. 160, 107938 (2021)

    Google Scholar 

  28. Rezaei, M., Talebitooti, R., Liao, W.H.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. 207, 106618 (2021)

    Google Scholar 

  29. Wang, X., Xu, Z., Wang, D., et al.: Dynamic and energetic characteristics comparison of a tri-stable vibration absorber and energy harvester using different permanent magnet arrays. Int. J. Struct. Stab. Dyn. 22, 2250062 (2022)

    MathSciNet  Google Scholar 

  30. Wang, Z., Jiao, Y., Chen, Z.: Parameter study of friction damping ring for railway wheels based on modal analysis. Appl. Acoust. 153, 140–146 (2019)

    Google Scholar 

  31. Capozza, R., Vanossi, A., Vezzani, A., et al.: Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103(8), 085502 (2009)

    Google Scholar 

  32. Lu, X.D., Zhao, J., Mo, J.L., et al.: Suppression of friction-induced stick–slip behavior and improvement of tribological characteristics of sliding systems by introducing damping materials. Tribol. Trans. 63(2), 222–234 (2020)

    Google Scholar 

  33. Xiao, W., Li, J., Pan, T., et al.: Investigation into the influence of particles’ friction coefficient on vibration suppression in gear transmission. Mech. Mach. Theory 108, 217–230 (2017)

    Google Scholar 

  34. Xu, Z., Wang, M.Y., Chen, T.: Particle damping for passive vibration suppression: numerical modelling and experimental investigation. J. Sound Vib. 279(3–5), 1097–1120 (2005)

    Google Scholar 

  35. Gaul, L., Albrecht, H., Wirnitzer, J.: Semi-active friction damping of large space truss structures. Shock. Vib. 11(3–4), 173–186 (2004)

    MATH  Google Scholar 

  36. Gaul, L., Albrecht, H., Wirnitzer, J.: Semi-active friction damping of flexible lightweight structures//advances in smart technologies in structural engineering, pp. 25–43. Springer, Berlin (2004)

    MATH  Google Scholar 

  37. Park, Y., Kim, K.: Semi-active vibration control of space truss structures by friction damper for maximization of modal damping ratio. J. Sound Vib. 332(20), 4817–4828 (2013)

    Google Scholar 

  38. Ruangrassamee, A., Srisamai, W., Lukkunaprasit, P.: Response mitigation of the base isolated benchmark building by semi-active control with the viscous-plus-variable-friction damping force algorithm. Struct. Control. Health Monit. 13(2–3), 809–822 (2006)

    Google Scholar 

  39. Lu, L.Y., Lin, T.K., Jheng, R.J., et al.: Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures. J. Sound Vib. 412, 184–206 (2018)

    Google Scholar 

  40. Stammers, C.W., Sireteanu, T.: Vibration control of machines by use of semi-active dry friction damping. J. Sound Vib. 209(4), 671–684 (1998)

    Google Scholar 

  41. Zhang, A., Sorokin, V., Li, H.: Dynamic analysis of a new autoparametric pendulum absorber under the effects of magnetic forces. J. Sound Vib. 485, 115549 (2020)

    Google Scholar 

  42. Pontes, B.R., Silveira, M., Mazotti, A.C., et al.: Contribution of electrical parameters on the dynamical behaviour of a nonlinear electromagnetic damper. Nonlinear Dyn. 79, 1957–1969 (2015)

    Google Scholar 

  43. Bednarek, M., Lewandowski, D., Polczyński, K., et al.: On the active damping of vibrations using electromagnetic spring. Mech. Based Des. Struct. Mach. 49(8), 1131–1144 (2021)

    Google Scholar 

  44. Behrens, S., Fleming, A.J., Moheimani, S.O.R.: Passive vibration control via electromagnetic shunt damping. IEEE/ASME Trans. Mechatron. 10(1), 118–122 (2005)

    Google Scholar 

  45. Kecik, K.: Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber. Commun. Nonlinear Sci. Numer. Simul. 92, 105479 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Kecik, K.: Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mech. Syst. Signal Process. 106, 198–209 (2018)

    Google Scholar 

  47. Wang, X., Xu, Z., Wang, D., et al.: Dynamic and energetic characteristics comparison of a tri-stable vibration absorber and energy harvester using different permanent magnet arrays. Int. J. Struct. Stab. Dyn. 22(06), 2250062 (2022)

    MathSciNet  Google Scholar 

  48. Liu, C., Liao, B., Zhao, R., et al.: Large stroke tri-stable vibration energy harvester: modelling and experimental validation. Mech. Syst. Signal Process. 168, 108699 (2022)

    Google Scholar 

  49. Yang, P., Wen, S.: A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. J. Tribol. 112(4), 631–636 (1990)

    Google Scholar 

  50. Huang, X., Zhang, X., Wang, Y.: Numerical simulation of ferrofluid-lubricated rough elliptical contact with start-up motion. Appl. Math. Model. 91, 232–260 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Gao, M., Wang, Y., Wang, Y., et al.: Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Appl. Energy 220, 856–875 (2018)

    Google Scholar 

  52. Younesian, D., Alam, M.R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017)

    Google Scholar 

  53. Jafari, S., Ahmadi, A., Khalaf, A.J.M., et al.: A new hidden chaotic attractor with extreme multi-stability. AEU Int. J. Electron. Commun. 89, 131–135 (2018)

    Google Scholar 

  54. Yang, X., Lai, S.K., Wang, C., et al.: On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations. Energy 252, 124028 (2022)

    Google Scholar 

Download references

Funding

The work is supported by National Natural Science Foundation of China (52305103), Changsha Natural Science Foundation Project (kq2208025), Distinguished Young Scholars Fund of National Natural Science Foundation of China (52025082) and Key Support Project of National Natural Science Foundation of China - "Ye Qisun" Science Foundation (U2141242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Huang, Z., Hua, X. et al. Investigation on vibration mitigation methodology with synergistic friction and electromagnetic damping energy dissipation. Nonlinear Dyn 111, 18885–18910 (2023). https://doi.org/10.1007/s11071-023-08832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08832-w

Keywords

Navigation