Skip to main content
Log in

Spontaneous Self-healing Bio-inspired Lubricant-infused Coating on Pipeline Steel Substrate with Reinforcing Anti-corrosion, Anti-fouling, and Anti-scaling Properties

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces (SHS) and slippery lubricant-infused porous surfaces (SLIPS) attract great attention due to their multiple properties in both industries and our daily lives. Here, we first fabricated the SHS with micro-scale flower-like structures composed of nano-sheets on pipeline steel substrate. Then, we obtained the SLIPS by spin-coating lubricant into gaps of micro-scale flower-like structures, with the air still trapped among gaps of nano-sheets. The SLIPS shows excellent liquid repellency as the SHS. The SLIPS also shows stability after the scour of flowing water. These results of polarization curves (Tafel) and electrochemical impedance spectroscopies deduced the SLIPS with better and more stable anti-corrosion property than the SHS. Compared with the SHS, the lack of attachment and CaCO3 on the SLIPS indicates that the SLIPS demonstrates better anti-fouling and anti-scaling properties than the SHS. Moreover, the SLIPS shows promising wear resistance under the abrasion simulated by sandpaper compared with the SHS. Notably, the air trapped among nano-sheets is conducive to the lubricant flowing to the surface quickly, exhibiting spontaneous self-healing in atmosphere, even if part flower-like structures of the SLIPS subject to damage with the lubricant consumed after scratched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443–447.

    Article  Google Scholar 

  2. Signorelli, F., Sousa, M. F. B., & Bertran, C. A. (2019). Interfacial phenomena on the inorganic scaling prevention. ACS Omega, 4, 79–85.

    Article  Google Scholar 

  3. Wang, Y. J., Zhao, W. J., Wu, W. T., Wang, C. T., Wu, X. D., & Xue, Q. J. (2018). Fabricating bionic ultraslippery surface on titanium alloys with excellent fouling-resistant performance. ACS Applied Bio Materials, 2, 155–162.

    Article  Google Scholar 

  4. Niu, A. J., Bi, Z. Y., Niu, H., Huang, X. H., & Ren, Y. F. (2016). Corrosion resistance of X70LSAW pipe with heavy wall used for oil and gas transportation in deep sea. Corros Prot, 10, 12–15.

    Google Scholar 

  5. Feng, Y., & Cheng, Y. F. (2017). An intelligent coating doped with inhibitor-encapsulated nanocontainers for corrosion protection of pipeline steel. Chemical Engineering Journal, 315, 537–551.

    Article  Google Scholar 

  6. Fan, L., Reis, S. T., Chen, G., & Koenigstein, M. (2018). Corrosion resistance of pipeline steel with damaged enamel coating and cathodic protection. Coatings, 8, 185–197.

    Article  Google Scholar 

  7. Legg, M., Yücel, M. K., Garcia, C. I., Kappatos, V., Selcuk, C., & Gan, T. H. (2015). Acoustic methods for biofouling control: A review. Ocean Engineering, 103, 237–247.

    Article  Google Scholar 

  8. Su, X., Hao, D. Z., Li, Z. N., Guo, X. L., & Jiang, L. (2019). Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling. J Mater Chem B, 7, 1322–1332.

    Article  Google Scholar 

  9. Dafforn, K. A., Lewis, J. A., & Johnston, E. L. (2011). Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin, 62, 453–465.

    Article  Google Scholar 

  10. Fink, J. K. (2013). Hydraulic fracturing chemicals and fluids technology. Gulf Prof Publ, 21, 234–235.

    Google Scholar 

  11. Martinod, A., Euvrard, M., Foissy, A., & Neville, A. (2008). Progressing the understanding of chemical inhibition of mineral scale by green inhibitors. Desalination, 220, 345–352.

    Article  Google Scholar 

  12. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.

    Article  Google Scholar 

  13. Li, H., Yu, S. Y., Hu, J. H., & Yin, X. L. (2019). Modifier-free fabrication of durable superhydrophobic electrodeposited Cu–Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties. Applied Surface Science, 481, 872–882.

    Article  Google Scholar 

  14. Yang, Z., Liu, X. P., & Tian, Y. L. (2019). Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired super-hydrophobic surface with excellent self-cleaning, stability and corrosion resistance. Journal of Bionic Engineering, 16, 13–26.

    Article  Google Scholar 

  15. Liu, X. H., Wang, P., Zhang, D., & Chen, X. T. (2021). Atmospheric corrosion protection performance and mechanism of super-hydrophobic surface based on coalescence-induced droplet self-jumping behavior. ACS Appl Mater Interfac, 13, 25438–25450.

    Article  Google Scholar 

  16. Hwang, G. B., Page, K., Patir, A., Nair, S. P., Allan, E., & Parkin, I. P. (2018). The anti-biofouling properties of superhydrophobic surfaces are short-lived. ACS Nano, 12, 6050–6058.

    Article  Google Scholar 

  17. Yan, H., Wu, Q. S., Yu, C. M., Zhao, T. Y., & Liu, M. J. (2020). Recent progress of biomimetic antifouling surfaces in marine. Adv Mater Interfac, 7, 2000966.

    Article  Google Scholar 

  18. Li, H., Xin, L., Zhang, K., Yin, X. L., & Yu, S. R. (2022). Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property. Surface & Coatings Technology, 438, 128406.

    Article  Google Scholar 

  19. Jiang, W., He, J., Xiao, F., Yuan, S. J., Lu, H., & Liang, B. (2015). Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces. Industrial and Engineering Chemistry Research, 54, 6874–6883.

    Article  Google Scholar 

  20. Chatterjee, R., Beysens, D., & Anand, S. (2019). Delaying ice and frost formation using phase-switching liquids. Advanced Materials, 31, 1807812.

    Article  Google Scholar 

  21. Bohn, H. F., & Federle, W. (2004). Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National academy of Sciences of the United States of America, 101, 14138–14143.

    Article  Google Scholar 

  22. Jiang, D., Xia, X. C., Hou, J., Cai, G. Y., Zhang, X. X., & Dong, Z. H. (2019). A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chemical Engineering Journal, 373, 285–297.

    Article  Google Scholar 

  23. Huang, J. F., Kang, J. J., Zhang, J. X., Huang, J. X., & Guo, Z. G. (2022). Slippery surface with petal-like structure for protecting Al alloy: Anti-corrosion, anti-fouling and anti-icing. Journal of Bionic Engineering, 19, 83–91.

    Article  Google Scholar 

  24. Li, H., Feng, X. L., Peng, Y. J., & Zeng, R. C. (2020). Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability. Nanoscale, 12, 7700–7711.

    Article  Google Scholar 

  25. Xu, F. C., Li, X., Weng, D. H., Li, Y., & Sun, J. Q. (2019). Transparent antismudge coatings with thermally assisted healing ability. J Mater Chem A, 7, 2812–2820.

    Article  Google Scholar 

  26. Cui, J. X., Daniel, D., Grinthal, A., Lin, K. X., & Aizenberg, J. (2015). Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nature Materials, 14, 790–795.

    Article  Google Scholar 

  27. Fang, Y., Chen, F., Hou, X., Huo, J. L., Yong, J. L., Zhang, J. Z., & Yang, Q. (2017). Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (slips) by femtosecond laser direct writing. Adv Mater Interfac, 4, 1700552.

    Article  Google Scholar 

  28. Yamamoto, M., Nishikawa, N., Mayama, H., Nonomura, Y., Yokojima, S., Nakamura, S., & Uchida, K. (2015). Theoretical explanation of the lotus effect: Superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir, 31, 7355–7363.

    Article  Google Scholar 

  29. Han, K. Y., Heng, L. P., Zhang, Y. Q., Liu, Y., & Jiang, L. (2018). Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets’ multifunctional manipulation. Advancement of Science, 1801231, 1–8.

    Google Scholar 

  30. Bhushan, B., & Jung, Y. C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 56, 1–108.

    Article  Google Scholar 

  31. Teisala, H., Geyer, F., Haapanen, J., Juuti, P., Makela, J. M., Vollmer, D., & Butt, H. J. (2018). Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Advanced Materials, 30, 1706529.

    Article  Google Scholar 

  32. Liu, H. L., & Cao, G. X. (2016). Effectiveness of the Young-Laplace equation at nanoscale. Science and Reports, 6, 23936.

    Article  Google Scholar 

  33. Desai, M. A., & Sartale, S. D. (2015). Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Crystal Growth & Design, 15, 4813–4820.

    Article  Google Scholar 

  34. Li, J., Liu, X. H., Ye, Y. P., Zhou, H. D., & Chen, J. M. (2011). Fabrication of superhydrophobic CuO surfaces with tunable water adhesion. Journal of Physical Chemistry C, 115, 4726–4729.

    Article  Google Scholar 

  35. Zhou, L. L., Xu, S. Y., Zhang, G. L., Cai, D. Q., & Wu, Z. Y. (2016). A facile approach to fabricate self-cleaning paint. Applied Clay Science, 132, 290–295.

    Article  Google Scholar 

  36. Zhou, H. M., Chen, R. R., Liu, Q., Liu, J. Y., Yu, J., Wang, C., Zhang, M. L., Liu, P. L., & Wang, J. (2019). Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chemical Engineering Journal, 368, 261–272.

    Article  Google Scholar 

  37. Zhang, M. L., Zhao, M. W., Chen, R. R., Liu, J. Y., Liu, Q., Yu, J., Li, R. M., Liu, P. L., & Wang, J. (2019). Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property. Applied Surface Science, 499, 143933.

    Article  Google Scholar 

  38. Zang, J. F., Ryu, S., Pugno, N., Wang, Q. M., Tu, Q., Buehler, M. J., & Zhao, X. H. (2013). Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Materials, 12, 321–325.

    Article  Google Scholar 

  39. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Article  Google Scholar 

  40. Liu, Y. Y., Wang, X., & Feng, S. Y. (2019). Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil–water separation. Advanced Functional Materials, 29, 1902488.

    Article  Google Scholar 

  41. Vazquez, G., Alvarez, E., & Navaza, J. M. (1995). Surface tension of alcohol water + water from 20 to 50. degree. Journal of Chemical and Engineering Data, 40, 611–614.

    Article  Google Scholar 

  42. Lee, C., Kim, H., & Nam, Y. (2014). Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir, 30, 8400–8407.

    Article  Google Scholar 

  43. Li, H., & Zhang, K. (2019). Dynamic behavior of water droplets impacting on the superhydrophobic surface: Both experimental study and molecular dynamics simulation study. Applied Surface Science, 498, 143793.

    Article  Google Scholar 

  44. Chen, L. Q., Xiao, Z. Y., Chan, P. C. H., Lee, Y. K., & Li, Z. G. (2011). A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Applied Surface Science, 257, 8857–8863.

    Article  Google Scholar 

  45. Aria, A. I., & Gharib, M. (2014). Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir, 30, 6780–6790.

    Article  Google Scholar 

  46. Baek, S., & Yong, K. (2020). Impact dynamics on SLIPS: Effects of liquid droplet’s surface tension and viscosity. Applied Surface Science, 506, 144689.

    Article  Google Scholar 

  47. Muschi, M., Brudieu, B., Teisseire, J., & Sauret, A. (2018). Drop impact dynamics on slippery liquid-infused porous surfaces: Influence of oil thickness. Soft Matter, 14, 1100–1107.

    Article  Google Scholar 

  48. Jiang, J. K., Zhang, H. D., He, W. Q., Li, T. Z., Li, H. L., Liu, P., Liu, M. J., Wang, Z. Y., Wang, Z. K., & Yao, X. (2017). Adhesion of microdroplets on water-repellent surfaces toward the prevention of surface fouling and pathogen spreading by respiratory droplets. ACS Appl Mater Interfac, 9, 6599–6608.

    Article  Google Scholar 

  49. Deng, R., Shen, T., Chen, H. L., Lu, J. X., Yang, H. C., & Li, W. H. (2020). Slippery liquid-infused porous surfaces (SLIPSs): A perfect solution to both marine fouling and corrosion? J Mater Chem A, 8, 7536–7547.

    Article  Google Scholar 

  50. Wei, D. S., Wang, J. G., Liu, Y., Wang, D. W., Li, S. Y., & Wang, H. Y. (2021). Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance. Chemical Engineering Journal, 404, 126444.

    Article  Google Scholar 

  51. Wang, P., Li, T. P., & Zhang, D. (2017). Fabrication of non-wetting surfaces on zinc surface as corrosion barrier. Corrosion Science, 128, 110–119.

    Article  Google Scholar 

  52. Zhang, X. G., Liu, Z. J., Li, Y., Wang, C. J., Zhu, Y. J., Wang, H. Y., & Wang, J. T. (2019). Robust superhydrophobic epoxy composite coating prepared by dual interfacial enhancement. Chemical Engineering Journal, 371, 276–285.

    Article  Google Scholar 

  53. Cheong, W. C., Gaskell, P. H., & Neville, A. (2013). Substrate effect on surface adhesion/crystallisation of calcium carbonate. Journal of Crystal Growth, 363, 7–21.

    Article  Google Scholar 

  54. Nosonovsky, M. (2011). Slippery when wetted. Nature Materials, 477, 412–413.

    Article  Google Scholar 

  55. Su, C. L., Horseman, T., Cao, H. B., Christie, K., Li, Y. P., & Lin, S. H. (2019). Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environmental Science and Technology, 53, 11801–11809.

    Article  Google Scholar 

  56. Diao, Y., Myerson, A. S., Hatton, T. A., & Trout, B. L. (2011). Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir, 27, 324–5334.

    Article  Google Scholar 

  57. Linnikov, O. D. (1999). Investigation of the initial period of sulphate scale formation part 1. Kinetics and mechanism of calcium sulphate surface nucleation at its crystallization on a heat-exchange surface. Desalination, 122, 1–14.

    Article  Google Scholar 

  58. Charpentier, T. V., Neville, A., Baudin, S., Smith, M. J., Euvrard, M., Bell, A., Wang, C., & Barker, R. (2015). Liquid infused porous surfaces for mineral fouling mitigation. J Colloid Interfac Sci, 444, 81–86.

    Article  Google Scholar 

  59. Wang, W., He, Y. Y., Zhao, J., Mao, J. Y., Hu, Y. T., & Luo, J. B. (2020). Optimization of groove texture profile to improve hydrodynamic lubrication performance: Theory and experiments. Friction, 8, 83–94.

    Article  Google Scholar 

  60. Luo, J. B., & Zhou, X. (2020). Superlubricitive engineering-future industry nearly getting rid of wear and frictional energy consumption. Friction, 8, 643–665.

    Article  Google Scholar 

  61. Gao, X. Y., & Guo, Z. G. (2018). Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface. J Colloid Interfac Sci, 512, 239–248.

    Article  Google Scholar 

  62. Cui, M. M., Wang, B., & Wang, Z. K. (2019). Nature-inspired strategy for anticorrosion. Advanced Engineering Materials, 21, 1801379.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2019BEM012), National Natural Science Foundation of China (51905315), the Fundamental Research Funds for the Central Universities (20CX02316A), and the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42235_2022_220_MOESM1_ESM.docx

Supplementary file1 Three-dimensional images of SHS and SLIPS (Fig. S1); XRD patterns and FTIR spectra of the steel sample under different conditions (Fig. S2); Photos, contact and rolling (or sliding) angles of droplets with different surface tension on SHS and SLIPS (Fig. S3); Contact and sliding angles of water and glycerol droplets on the SLIPS after scour of the flowing water (Fig. S4); Time-lapse images of water drops impinging on SHS and SLIPS with different velocities (Fig. S5); Changes of water and glycerol contact angle on the SHS and the SLIPS after immersed into 3.5 wt.% NaCl solution and seawater for different times (Fig. S6); Schematic illustration of the anti-corrosion mechanism of SHS and SLIPS (Fig. S7); Mechanisms illustration for anti-scaling of SHS and SLIPS (Fig. S8); Contact and sliding behaviors of water on SLIPS after slight and seriously knife scratch test, and the seriously scratched SLIPS after 12 h spontaneous self-healing process (Fig. S9); Electrochemical parameters of the polarization curves shown in Fig. 6(a) and (b) ; (Table S1); Charge transfer resistance (Rct) of the Nyquist plots shown in Fig. 6(c) and (d) (Table S2) (DOCX 5940 kb)

Supplementary file2 Video 1a. The water droplet is rolling on SHS (AVI 2864 kb)

Supplementary file3 Video 1b. The water droplet is sliding on SLIPS (AVI 12728 kb)

Supplementary file4 Video 2. SLIPS processed by flowing water (AVI 4302 kb)

Supplementary file5 Video 3a. Water droplets cleaned the dust particles on SHS (AVI 48713 kb)

Supplementary file6 Video 3b. Water droplets cleaned the dust particles on SLIPS (MP4 21994 kb)

Supplementary file7 Video 4a. The sliding behavior of water droplets on SHS after scratched (AVI 5566 kb)

Supplementary file8 Video 4b. The sliding behavior of glycerol droplets on SHS after scratched (AVI 14457 kb)

Supplementary file9 Video 5a. The sliding behavior of water droplets on SLIPS after scratched (100 g) (AVI 17636 kb)

Supplementary file10 Video 5b. The sliding behavior of glycerol droplets on SLIPS after scratched (100 g) (AVI 4468 kb)

Supplementary file11 Video 6a. The sliding behavior of water droplets on SHS after scratched (200 g) (AVI 8262 kb)

Supplementary file12 Video 6b. The sliding behavior of water droplets on SLIPS after scratched (200 g) (MP4 1848 kb)

Supplementary file13 Video 7a. The sliding behavior of water droplets on SLIPS after slight knife scratch (MP4 4321 kb)

Supplementary file14 Video 7b. The sliding behavior of water droplets on SLIPS after seriously knife scratch (MP4 13612 kb)

Supplementary file15 Video 7c. The sliding behavior of water droplets on seriously scratched SLIPS after 12 h spontaneous self-healing process (MP4 4538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Peng, Y., Zhang, K. et al. Spontaneous Self-healing Bio-inspired Lubricant-infused Coating on Pipeline Steel Substrate with Reinforcing Anti-corrosion, Anti-fouling, and Anti-scaling Properties. J Bionic Eng 19, 1601–1614 (2022). https://doi.org/10.1007/s42235-022-00220-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00220-1

Keywords

Navigation