Skip to main content
Log in

pH-indicative Films Based on Chitosan–PVA/Sepiolite and Anthocyanin from Red Cabbage: Application in Milk Packaging

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biobased smart packaging is been the most interesting research field. In this study, pH-sensitive films based on anthocyanin molecules from red cabbage and sepiolite mineral nano-clay as functional additives were studied. The films were fabricated by casting method of blend polymer Chitosan/Poly (Vinyl Alcohol) at two fillers loading (5wt.% and 10wt.%). The structural, morphological, thermal, optical, hygroscopic, and mechanical properties as well as the pH sensitivity of films were investigated. The thermal properties confirm that the amount of the anthocyanin in sepiolite was around 6.4%. The tensile strength and the young’s modulus of produced composites at 10wt.% sepiolite–anthocyanin content was increased to 8.90 MPa and 163 MPa, respectively. The maximum water absorption that the films may absorb was 12.3%. pH sensitivity analysis showed that the Smart films change the color by changing the pH level, from pink at pH lower than 6 to yellow at pH higher than 6. Thus, the developed pH-sensitive films show band gaps in visible light that make them useful for monitoring milk spoilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdelghany, A. M., Menazea, A. A., & Ismail, A. M. (2019). Synthesis, characterization and antimicrobial activity of chitosan/polyvinyl alcohol blend doped with hibiscus sabdariffa l. extract. Journal of Molecular Structure., 1197, 603–609.

    Article  Google Scholar 

  2. Abureesh, M. A., Oladipo, A. A., & Gazi, M. (2016). Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. International Journal of Biological Macromolecules., 90, 75–80.

    Article  Google Scholar 

  3. Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science and Technology., 105, 93–144.

    Article  Google Scholar 

  4. Aslıhan, D., Kenan, Ö., & Kader, E.-T. (2015). Extraction of anthocyanins from red cabbage by ultrasonic and conventional methods : Optimization and evaluation. Journal of Food Biochemistry., 39, 491–500.

    Article  Google Scholar 

  5. Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science and Technology., 105, 385–401.

    Article  Google Scholar 

  6. Bourakadi, K. E., Merghoub, N., Fardioui, M., Mekhzoum, M. E. M., Kadmiri, I. M., Essassi, E. M., el Qaiss, A., & K. and Bouhfid, R. (2019). Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Composites Part B: Engineering., 172, 103–110.

    Article  Google Scholar 

  7. Carvalho, V. V. L., Gonçalves, J. O., Silva, A., Cadaval, R., Pinto, L. A. A., & Lopes, T. J. (2019). Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. International Journal of Biological Macromolecules., 131, 905–911.

    Article  Google Scholar 

  8. Cheikh, D., Martín-Sampedro, R., Majdoub, H., & Darder, M. (2020). Alginate bionanocomposite films containing sepiolite modified with polyphenols from myrtle berries extract. International Journal of Biological Macromolecules., 165, 2079–2088.

    Article  Google Scholar 

  9. Detellier, C. and Letaief, S. (2013). Kaolinite-polymer nanocomposites, in: developments in clay science. Elsevier Ltd. 5, 707–719.

  10. Huang, X. W., Zou, X. B., Zhao, J. W., Shi, J. Y., Zhang, X. L., & Mel, H. (2014). Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models. Food Chemistry, 164, 536–543.

    Article  Google Scholar 

  11. Ebrahimi, F., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2019). Cellulose / chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International Journal of Biological Macromolecules., 136, 920–926.

    Article  Google Scholar 

  12. Wu, H. Y., Yang, K. M., & Chiang, P. Y. (2018). Roselle anthocyanins: Antioxidant properties and stability to heat and pH. Molecules, 23, 1–13.

    Google Scholar 

  13. Du, Q., Zheng, J., & Xu, Y. (2008). Composition of anthocyanins in mulberry and their antioxidant activity. Journal of Food Composition and Analysis, 21, 390–395.

    Article  Google Scholar 

  14. Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M. R., & Gobetto, R. (2011). Host/guest interactions in a sepiolite-based maya blue pigment: A spectroscopic study. Journal of Physical Chemistry C., 115, 16764–16776.

    Article  Google Scholar 

  15. Hanumantha Rao, K., Forssberg, K. S. E., & Forsling, W. (1998). Interfacial interactions and mechanical properties of mineral filled polymer composites: Wollastonite in PMMA polymer matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 133, 107–117.

    Article  Google Scholar 

  16. Jin, Y. R., Liu, Z. Z., Liu, D. M., Shi, G. Y., Liu, D. W., Yang, Y. F., et al. (2019). Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis-idaea L.) pomace. Industrial Crops & Products, 138, 111425.

    Article  Google Scholar 

  17. Junior, H. B., da Silva, E., Saltarelli, M., Crispim, D., Nassar, E. J., Trujillano, R., et al. (2020). Inorganic–organic hybrids based on sepiolite as efficient adsorbents of caffeine and glyphosate pollutants. Applied Surface Science Advances, 1, 100025.

    Article  Google Scholar 

  18. Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins : Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research., 61, 1–21.

    Article  Google Scholar 

  19. Li, S., Mu, B., Wang, X., Kang, Y., & Wang, A. (2019). A comparative study on color stability of anthocyanin hybrid pigments derived from 1D and 2D clay minerals. Materials., 12, 1–14.

    Google Scholar 

  20. Maringgal, B., Hashim, N., Tawakkal, M. A., & I.S. and Muda Mohamed, M.T. (2020). Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science and Technology., 96, 253–267.

    Article  Google Scholar 

  21. Mekhzoum, M.E.M., Raji, M., Rodrigue, D., Qaiss, A. el kacem and Bouhfid, R. (2020). The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites. Applied Clay Science, 185, 105417.

  22. Giustetto, R., Seenivasan, K., & Bordiga, S. (2010). Spectroscopic characterization of a sepiolite-based Maya Blue pigment. Periodico Di Mineralogia, 79, 21–37.

    Google Scholar 

  23. Li, S., Mu, B., Wang, X. W., Kang, Y. R., & Wang, A. Q. (2019). A comparative study on color stability of anthocyanin hybrid pigments derived from 1D and 2D clay minerals. Minerals, 12, 3287–3301.

    Google Scholar 

  24. Mokrzycki, W., & Tatol, M. (2011). Color difference Delta E - A survey. Machine Graphics and Vision, 20, 383–411.

    Google Scholar 

  25. Moloney, M., Robbins, R. J., Collins, T. M., Kondo, T., Yoshida, K., & Dangles, O. (2018). Dyes and pigments red cabbage anthocyanins : The in fl uence of D -glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color. Dyes and Pigments., 158, 342–352.

    Article  Google Scholar 

  26. Mónica Giusti, M., & Wrolstad, R. E. (2005). Characterization and measurement of anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry., 2, 19–31.

    Google Scholar 

  27. Mulders, J. J. P. A., & Oelkers, E. H. (2020). An experimental study of sepiolite dissolution rates and mechanisms at 25 °C. Geochimica et Cosmochimica Acta., 270, 296–312.

    Article  Google Scholar 

  28. Mustafa, P., Niazi, M. B. K., Jahan, Z., Samin, G., Hussain, A., Ahmed, T., & Naqvi, S. R. (2020). PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. Journal of Food Safety., 40, 1–11.

    Article  Google Scholar 

  29. Nekhlaoui, S., Abdelaoui, H., Raji, M., Essabir, H., Rodrigue, D., Bensalah, M. O., Bouhfid, R., el Qaiss, A., & K. (2021). Assessment of thermo-mechanical, dye discoloration, and hygroscopic behavior of hybrid composites based on polypropylene/clay (illite)/TiO2. International Journal of Advanced Manufacturing Technology., 113, 2615–2628.

    Article  Google Scholar 

  30. Oliveira, H., Basílio, N., Pina, F., Fernandes, I., Freitas, V. D., & Mateus, N. (2019). Purple-Fleshed Sweet Potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry., 288, 386–394.

    Article  Google Scholar 

  31. Paula, D. D. A., Ramos, A. M., Basílio De Oliveira, E., Furtado Martins, E. M., Frederico Augusto, R. D. B., Márcia Cristina, T. R. V., & Nataly, de A.C. and Carolina, T. da R. (2018). Increased thermal stability of anthocyanins at pH 4.0 by guar gum in aqueous dispersions and in double emulsions W/O/W. International Journal of Biological Macromolecules., 117, 665–672.

    Article  Google Scholar 

  32. Pinela, J., Prieto, M. A., Pereira, E., Jabeur, I., Barreiro, M. F., Barros, L., & Ferreira, I. C. F. R. (2018). Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry., 275, 309–321.

    Article  Google Scholar 

  33. Prietto, L., Mirapalhete, T. C., Pinto, V. Z., Hoffmann, J. F., Vanier, N. L., Lim, L. T., Guerra Dias, A. R., & da Rosa Zavareze, E. (2017). pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology., 80, 492–500.

    Article  Google Scholar 

  34. Priyadarshi, R., Ezati, P., & Rhim, J.-W. (2021). Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Science & Technology, 1, 124–138.

    Article  Google Scholar 

  35. Queiroz, M. F., & Melo=, K.R.T., Sabry, D.A., Sassaki, G.L. and Rocha, H.A.O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs., 13, 141–158.

    Article  Google Scholar 

  36. Essabir, H., Raji, M. Bouhfid, R. and Qaiss, A. el K.. (2016). Nanoclay and natural fibers based hybrid composites: mechanical, morphological, thermal and rheological properties. In: Nanoclay Reinforced Polymer Composites. Springer ldt, 29–49.

  37. Raji, M., El, M., Mekhzoum, M., Rodrigue, D., & Bouhfid, R. (2018). Effect of silane functionalization on properties of polypropylene / clay nanocomposites. Composites, Part B: Engineering, 146, 106–115.

    Article  Google Scholar 

  38. Raji, M., Essabir, H., Essassi, E. M., Rodrigue, D., Bouhfid, R., el Qaiss, A., & K. (2016). Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polymers and Polymer Composites., 39, 1522–1533.

    Article  Google Scholar 

  39. Raji, M., Nekhlaoui, S., Hassani, E. E. A. E., Essassi, E. M., Rodrigue, D., Bouhfid, R., el Qaiss, A., & kacem,. (2019). Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites. Composites Part B: Engineering., 165, 47–54.

    Article  Google Scholar 

  40. Raji, M., Qaiss, A. E. K., & Bouhfid, R. (2020). Effects of bleaching and functionalization of kaolinite on the mechanical and thermal properties of polyamide 6 nanocomposites. RSC Advances., 10, 4916–4926.

    Article  Google Scholar 

  41. Roy, S., & Rhim, J. W. (2021). Preparation of gelatin/carrageenan-based color-indicator film integrated with shikonin and propolis for smart food packaging applications. ACS Applied Bio Materials., 4, 770–779.

    Article  Google Scholar 

  42. Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science and Technology., 103, 118–129.

    Article  Google Scholar 

  43. Santos, C. M., Gomes, B., Gonçalves, L. M., Oliveira, J., Rocha, S., Coelho, M., Rodrigues, J., & a., Freitas, V. and Aguilar, H. (2014). Pyranoflavylium derivatives extracted from wine grape as photosensitizers in solar cells. Journal of the Brazilian Chemical Society., 25, 1029–1035.

    Google Scholar 

  44. Hassani, S. A., & F.Z., Ouarhim, W., Raji, M., Mekhzoum, M.E.M., Bensalah, M.O., Essabir, H., Rodrigue, D., Bouhfid, R. and Qaiss, A. el kacem,. (2019). N-silylated benzothiazolium dye as a coupling agent for polylactic acid/date palm fiber bio-composites. Journal of Polymers and the Environment., 27, 2974–2987.

    Article  Google Scholar 

  45. Silva, G. T. M., Da Silva, K. M., Silva, C. P., Rodrigues, A. C. B., Oake, J., Gehlen, M. H., Bohne, C., & Quina, F. H. (2019). Highly fluorescent hybrid pigments from anthocyanin- and red wine pyranoanthocyanin-analogs adsorbed on sepiolite clay. Photochemical and Photobiological Sciences., 18, 1750–1760.

    Article  Google Scholar 

  46. Silva, G. T. M., Silva, K. M., Silva, C. P., Gonçalves, J. M., & Quina, F. H. (2020). Hybrid pigments from anthocyanin analogues and synthetic clay minerals. ACS Omega, 5, 26592–26600.

    Article  Google Scholar 

  47. Soldatkina, L. M., & Novotna, V. O. (2017). Adsorption removal of anthocyanins from red cabbage extracts by bentonite: Statistical analysis of main and interaction effects. Himia, Fizika ta Tehnologia Poverhni., 8, 439–447.

    Article  Google Scholar 

  48. Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science and Technology., 15, 19–38.

    Article  Google Scholar 

  49. Vo, T. V., Dang, T. H., & Chen, B. H. (2019). Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers, 11, 1–12.

    Article  Google Scholar 

  50. Wang, H., Li, B., Ding, F., & Ma, T. (2020). Progress in organic coatings improvement of properties of smart ink via chitin nanofiber and application as freshness indicator. Progress in Organic Coatings, 149, 105921.

    Article  Google Scholar 

  51. Wang, Z. H., Zhao, C. X., Han, D. M., & Gu, F. B. (2015). Luminol chemiluminescence actuated by modified natural sepiolite material and its analytical application. Analytical Methods, 7, 2779–2785.

    Article  Google Scholar 

  52. Welch, C. R., Wu, Q., & Simon, J. E. (2008). Recent advances in anthocyanin analysis and characterization. Current Analytical Chemistry., 4, 75–101.

    Article  Google Scholar 

  53. Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial fd & c food colorants. Annual review of food science and technology., 3, 59–77.

    Article  Google Scholar 

  54. Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, 105438.

    Article  Google Scholar 

  55. Xue Mei, L., MohammadiNafchi, A., Ghasemipour, F., Mat Easa, A., Jafarzadeh, S., & Al-Hassan, A. A. (2020). Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. International Journal of Biological Macromolecules., 164, 4603–4612.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in conception, design, interpretation of the data and approval of the final version.

Corresponding author

Correspondence to Abou el kacem Qaiss.

Ethics declarations

Conflict of Interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, M., El Foujji, L., Mekhzoum, M.E.M. et al. pH-indicative Films Based on Chitosan–PVA/Sepiolite and Anthocyanin from Red Cabbage: Application in Milk Packaging. J Bionic Eng 19, 837–851 (2022). https://doi.org/10.1007/s42235-022-00161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00161-9

Keywords

Navigation