Skip to main content
Log in

A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As a newly discovered two-dimensional (2D) material, MXene has attracted much attention because of its fascinating physicochemical properties. However, the issue of agglomeration has limited its application in anti-corrosive polymeric coatings. Herein, a novel nanofiller, phosphoric acid-modified chitosan (mCS)-functionalized MXene (fMX), has been successfully constructed and used to endow waterborne epoxy (WEP) coatings with brilliant corrosive resistance. Electrochemical results demonstrate that the |Z0.01 Hz| value for 0.2 wt% fMX/WEP composite coating (4.73 × 107 Ω cm2) is more than two orders of magnitude higher than that of the blank WEP (2.09 × 105 Ω cm2) and the corrosion current density value of 0.2 wt% fMX/WEP maintains above 5.44 × 10−9 A/cm2 after soaking in 3.5 wt% NaCl solution for 50 days. It is nearly two orders lower than that of blank WEP (5.23 × 10−7 A/cm2). Thus, this novel mCS-functionalized MXene can serve as an effective composite nanofiller for preparing MXene-based high-performance anti-corrosive coatings.

Graphical abstract

Phosphorylated chitosan-functionalized MXene (fMX)-based polymeric composite coatings have excellent long-term anti-corrosive property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang H, Tian Y, Xie Y et al (2020) Modification of graphene oxide with acrylate phosphorus monomer via thiol-Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coatings. Prog Org Coat 146:105724. https://doi.org/10.1016/j.porgcoat.2020.105724

    Article  CAS  Google Scholar 

  2. Andreeva DV, Skorb EV, Shchukin DG (2010) Layer-by-layer polyelectrolyte/inhibitor nanostructures for metal corrosion protection. ACS Appl Mater Interfaces 2:1954–1962. https://doi.org/10.1021/am1002712

    Article  CAS  Google Scholar 

  3. Lin J, Hu J, Wang W et al (2021) Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem Eng J 407:125783. https://doi.org/10.1016/j.cej.2020.125783

    Article  CAS  Google Scholar 

  4. Zhu Q, Huang Y, Li Y et al (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4:780–792. https://doi.org/10.1007/s42114-021-00265-6

    Article  CAS  Google Scholar 

  5. Yang X, Zhong X, Zhang J, Gu J (2021) Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J Mater Sci Technol 68:209–215. https://doi.org/10.1016/j.jmst.2020.08.027

    Article  CAS  Google Scholar 

  6. Madhusudhana AM, Mohana KNS, Hegde MB et al (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3:141–155. https://doi.org/10.1007/s42114-020-00142-8

    Article  CAS  Google Scholar 

  7. Hu J, Lin J, Zhang Y et al (2019) A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J Mater Chem A 7:26039–26052. https://doi.org/10.1039/C9TA07236E

    Article  CAS  Google Scholar 

  8. Xia Y, Zhang N, Zhou Z et al (2020) Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy. Prog Org Coat 147:105768. https://doi.org/10.1016/j.porgcoat.2020.105768

    Article  CAS  Google Scholar 

  9. Yang X, Liang C, Ma T et al (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  10. Liang C, Song P, Qiu H et al (2019) Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11:22590–22598. https://doi.org/10.1039/C9NR06022G

    Article  CAS  Google Scholar 

  11. Ma Y, Huang H, Zhou H et al (2021) Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide. J Mater Sci Technol 95:95–104. https://doi.org/10.1016/j.jmst.2021.04.019

    Article  CAS  Google Scholar 

  12. Yan H, Dai X, Ruan K et al (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50. https://doi.org/10.1007/s42114-021-00208-1

    Article  CAS  Google Scholar 

  13. Song P, Liu B, Qiu H et al (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos Commun 24:100653. https://doi.org/10.1016/j.coco.2021.100653

    Article  Google Scholar 

  14. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small. https://doi.org/10.1002/smll.202101951

    Article  Google Scholar 

  15. Qi F, Wang L, Zhang Y et al (2021) Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater Today Phys. https://doi.org/10.1016/j.mtphys.2021.100512

    Article  Google Scholar 

  16. Yang X, Fan S, Li Y et al (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part Appl Sci Manuf 128:105670. https://doi.org/10.1016/j.compositesa.2019.105670

    Article  CAS  Google Scholar 

  17. Liang C, Qiu H, Song P et al (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci Bull 65:616–622. https://doi.org/10.1016/j.scib.2020.02.009

    Article  CAS  Google Scholar 

  18. Yan H, Cai M, Li W et al (2020) Amino-functionalized Ti3C2T with anti-corrosive/wear function for waterborne epoxy coating. J Mater Sci Technol 54:144–159. https://doi.org/10.1016/j.jmst.2020.05.002

    Article  Google Scholar 

  19. Sun W, Wang L, Wu T et al (2015) Inhibiting the corrosion-promotion activity of graphene. Chem Mater 27:2367–2373. https://doi.org/10.1021/cm5043099

    Article  CAS  Google Scholar 

  20. Cui M, Ren S, Pu J et al (2019) Poly(o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings. Corros Sci 159:108131. https://doi.org/10.1016/j.corsci.2019.108131

    Article  CAS  Google Scholar 

  21. Cai M, Yan H, Li Y et al (2021) Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application. Chem Eng J 410:128310. https://doi.org/10.1016/j.cej.2020.128310

    Article  CAS  Google Scholar 

  22. Cui G, Guo J, Zhang Y et al (2019) Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution. Carbohydr Polym 203:386–395. https://doi.org/10.1016/j.carbpol.2018.09.038

    Article  CAS  Google Scholar 

  23. Cheng S, Chen S, Liu T et al (2007) Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1 M HCl. Mater Lett 61:3276–3280. https://doi.org/10.1016/j.matlet.2006.11.102

    Article  CAS  Google Scholar 

  24. Fayyad EM, Sadasivuni KK, Ponnamma D, Al-Maadeed MAA (2016) Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel. Carbohydr Polym 151:871–878. https://doi.org/10.1016/j.carbpol.2016.06.001

    Article  CAS  Google Scholar 

  25. Ruhi G, Modi OP, Dhawan SK (2015) Chitosan-polypyrrole-SiO2 composite coatings with advanced anticorrosive properties. Synth Met 200:24–39. https://doi.org/10.1016/j.synthmet.2014.12.019

    Article  CAS  Google Scholar 

  26. Abd El-Fattah M, El-Saeed AM, Azzam AM et al (2016) Improvement of corrosion resistance, antimicrobial activity, mechanical and chemical properties of epoxy coating by loading chitosan as a natural renewable resource. Prog Org Coat 101:288–296. https://doi.org/10.1016/j.porgcoat.2016.09.002

    Article  CAS  Google Scholar 

  27. Jayakumar R, Nagahama H, Furuike T, Tamura H (2008) Synthesis of phosphorylated chitosan by novel method and its characterization. Int J Biol Macromol 42:335–339. https://doi.org/10.1016/j.ijbiomac.2007.12.011

    Article  CAS  Google Scholar 

  28. Yu H, Xu X, Xia Y et al (2020) Synthesis of a novel modified chitosan as an intumescent flame retardant for epoxy resin. E-Polym 20:303–316. https://doi.org/10.1515/epoly-2020-0036

    Article  CAS  Google Scholar 

  29. Zheng B, Mao C, Gu T et al (2019) Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. New J Chem 43:2002–2010. https://doi.org/10.1039/C8NJ04889D

    Article  CAS  Google Scholar 

  30. Lu X, Huang H, Zhang X et al (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos Part B Eng 177:107372. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  31. Zhou Y, Lin Y, Tawiah B et al (2021) DOPO-decorated two-dimensional MXene nanosheets for flame-retardant, ultraviolet-protective, and reinforced polylactide composites. ACS Appl Mater Interfaces 13:21876–21887. https://doi.org/10.1021/acsami.1c05587

    Article  CAS  Google Scholar 

  32. Wei Y, Luo W, Zhuang Z et al (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00323-z

    Article  Google Scholar 

  33. Sheng X, Zhao Y, Zhang L, Lu X (2019) Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos Sci Technol 181:107710. https://doi.org/10.1016/j.compscitech.2019.107710

    Article  CAS  Google Scholar 

  34. Osti NC, Naguib M, Ostadhossein A et al (2016) Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl Mater Interfaces 8:8859–8863. https://doi.org/10.1021/acsami.6b01490

    Article  CAS  Google Scholar 

  35. Yazdanparast S, Soltanmohammad S, Fash-White A et al (2020) Synthesis and surface chemistry of 2D TiVC solid-solution MXenes. ACS Appl Mater Interfaces 12:20129–20137. https://doi.org/10.1021/acsami.0c03181

    Article  CAS  Google Scholar 

  36. Ungár T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scr Mater 51:777–781. https://doi.org/10.1016/j.scriptamat.2004.05.007

    Article  CAS  Google Scholar 

  37. Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16:1575–1593. https://doi.org/10.1163/156856205774576736

    Article  CAS  Google Scholar 

  38. Wang Y, Liu Z, Wei X et al (2021) An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem Eng J 413:127493. https://doi.org/10.1016/j.cej.2020.127493

    Article  CAS  Google Scholar 

  39. Chen C-H, Wang F-Y, Mao C-F et al (2008) Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films. Int J Biol Macromol 43:37–42. https://doi.org/10.1016/j.ijbiomac.2007.09.005

    Article  CAS  Google Scholar 

  40. Halim J, Cook KM, Naguib M et al (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417. https://doi.org/10.1016/j.apsusc.2015.11.089

    Article  CAS  Google Scholar 

  41. Raj KJA, Shanmugam R, Mahalakshmi R, Viswanathan B (2010) XPS and IR spectral studies on the structure of phosphate and sulphate modified titania – a combined DFT and experimental study. IJC- Vol49A01 January 2010

  42. Gao Q, Pan Y, Zheng G et al (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285. https://doi.org/10.1007/s42114-021-00221-4

    Article  CAS  Google Scholar 

  43. Liu X, Guo J, Tang W et al (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part Appl Sci Manuf 119:291–298. https://doi.org/10.1016/j.compositesa.2019.02.009

    Article  CAS  Google Scholar 

  44. Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater 29:1632–1640. https://doi.org/10.1021/acs.chemmater.6b04830

    Article  CAS  Google Scholar 

  45. Zhou X, Huang H, Zhu R et al (2019) Facile modification of graphene oxide with lysine for improving anti-corrosion performances of water-borne epoxy coatings. Prog Org Coat 136:105200. https://doi.org/10.1016/j.porgcoat.2019.06.046

    Article  CAS  Google Scholar 

  46. Tikhani F, Jouyandeh M, Jafari SH et al (2019) Cure index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Prog Org Coat 135:176–184. https://doi.org/10.1016/j.porgcoat.2019.05.017

    Article  CAS  Google Scholar 

  47. Zhang L, Li CZ, Zhou Q, Shao W (2007) Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size. J Mater Sci 42:4227–4232. https://doi.org/10.1007/s10853-006-0630-6

    Article  CAS  Google Scholar 

  48. Sheng X, Mo R, Ma Y et al (2019) Waterborne epoxy resin/polydopamine modified zirconium phosphate nanocomposite for anticorrosive coating. Ind Eng Chem Res 58:16571–16580. https://doi.org/10.1021/acs.iecr.9b02557

    Article  CAS  Google Scholar 

  49. Zheng S, Bellido-Aguilar DA, Hu J et al (2019) Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates. Prog Org Coat 136:105265. https://doi.org/10.1016/j.porgcoat.2019.105265

    Article  CAS  Google Scholar 

  50. Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim Acta 41:1073–1082. https://doi.org/10.1016/0013-4686(95)00440-8

    Article  CAS  Google Scholar 

  51. Mahdavian M, Attar MM (2009) Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros Sci 51:409–414. https://doi.org/10.1016/j.corsci.2008.11.010

    Article  CAS  Google Scholar 

  52. Hamdy AS, Doench I, Möhwald H (2011) Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Prog Org Coat 72:387–393. https://doi.org/10.1016/j.porgcoat.2011.05.011

    Article  CAS  Google Scholar 

  53. Li Z, Qin B, Zhang X et al (2015) Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. RSC Adv 5:104451–104457. https://doi.org/10.1039/C5RA19614K

    Article  CAS  Google Scholar 

  54. Wang N, Zhang Y, Chen J et al (2017) Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings. Prog Org Coat 109:126–134. https://doi.org/10.1016/j.porgcoat.2017.04.024

    Article  CAS  Google Scholar 

  55. Huang H, Li M, Tian Y et al (2020) Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance. Prog Org Coat 138:105390. https://doi.org/10.1016/j.porgcoat.2019.105390

    Article  CAS  Google Scholar 

  56. Coquery C, Negrell C, Caussé N et al (2019) Synthesis of new high molecular weight phosphorylated chitosans for improving corrosion protection. Pure Appl Chem 91:509–521. https://doi.org/10.1515/pac-2018-0509

    Article  CAS  Google Scholar 

  57. Soleymanibrojeni M, Shi H, Udoh II et al (2019) Microcontainers with 3-amino-1,2,4-triazole-5-thiol for enhancing anticorrosion waterborne coatings for AA2024-T3. Prog Org Coat 137:105336. https://doi.org/10.1016/j.porgcoat.2019.105336

    Article  CAS  Google Scholar 

  58. Hayatgheib Y, Ramezanzadeh B, Kardar P, Mahdavian M (2018) A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros Sci 133:358–373. https://doi.org/10.1016/j.corsci.2018.01.046

    Article  CAS  Google Scholar 

  59. Cui M, Ren S, Qin S et al (2018) Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros Sci 131:187–198. https://doi.org/10.1016/j.corsci.2017.11.022

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51908031 and 52003111). X. S. acknowledges the support from the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology (Grant No. GC202110). Y. C. acknowledges the support from Guangdong Special Support Program (Grant No. 2017TX04N371). J. H. acknowledges the support from the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education (Grant No. KFKT2001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxin Sheng or Ying Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, S., Shen, R. et al. A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Mater 5, 1699–1711 (2022). https://doi.org/10.1007/s42114-021-00392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00392-0

Keywords

Navigation