Skip to main content
Log in

A tough, resilient, and fluorinated solid-electrolyte interphase stabilizing lithium metal in carbonate electrolytes

坚韧、弹性的氟化固体电解质界面稳定碳酸酯电解 质中的锂金属

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The unstable interface between lithium metal anodes and carbonate-based electrolytes is a key challenge limiting the cycling lifespan of high-energy lithium metal batteries. Here, a resilient artificial solid electrolyte interphase (RASEI) was designed by regulating poly(hexafluorobutyl acrylate) (PHFBA) matrix with the benzene-containing bisphenol A ethoxylate dimethacrylate (BAED) crosslinker to address this issue. The rigid BAED molecule can finely tune the flexible PHFBA matrix, enabling superior resilience from 600% elongation to 90% compression with a high Young’s modulus of over 2 MPa. RASEI with these characteristics can accommodate large volume changes of lithium metal and ensure the intimate contact between the lithium metal and the RASEI during battery operation. Consequently, it facilitated homogeneous lithium deposition while mitigating parasitic side reactions. Thanks to the tough and resilient nature of the fluorinated RASEI, the long-term cycling of Li∣∣Li symmetric cells can be achieved for over 500 h at 1 mA cm−2 and 1 mAh cm−2. The following post-mortem of cycled Li metal reveals that Li dendrite growth is effectively inhibited. Furthermore, the NCM811 pouch cell with a high cathode loading of 20 mg cm−2 exhibits a capacity retention of over 85% after 200 cycles at 1 C.

摘要

锂金属负极和碳酸酯类电解液之间不稳定的界面是限制高比能 锂金属电池循环寿命的关键挑战. 本文使用含苯环的双酚A乙氧基化物 二甲基丙烯酸酯(BAED)交联剂调节聚(丙烯酸六氟丁酯)(PHFBA), 设 计了一种弹性人造固体电解质中间相(RASEI)来解决这个问题. 刚性 BAED分子可以对柔性PHBA基体进行调控, 实现从600%伸长率到90% 压缩率的卓越回弹性, 并具有超过2 MPa的高杨氏模量. RASEI可以适 应锂金属较大的体积变化, 并确保电池运行过程中锂金属与RASEI之 间的紧密接触, 促进均匀的锂沉积并减少副反应. 因此, 经过RASEI修 饰的Li∣∣Li对称电池可以在1 mA cm−2和1 mAh cm−2下实现超过500小 时的长期循环. 对循环后锂金属进行测试分析表明锂枝晶的生长得到 了有效的抑制. 此外, 搭配20 mg cm−2高阴极负载的NCM811软包电池 在1 C下, 经过200次循环后容量保持率超过85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech, 2017, 12: 194–206

    Article  CAS  Google Scholar 

  2. Xu P, Shuang ZY, Zhao CZ, et al. A review of solid-state lithium metal batteries through in-situ solidification. Sci China Chem, 2023, 67: 67–86

    Article  Google Scholar 

  3. Fang W, Wen Z, Chen L, et al. Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes. Nano Energy, 2022, 104: 107881

    Article  CAS  Google Scholar 

  4. Yeddala M, Rynearson L, Lucht BL. Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett, 2023, 8: 4782–4793

    Article  CAS  Google Scholar 

  5. Lu G, Nai J, Luan D, et al. Surface engineering toward stable lithium metal anodes. Sci Adv, 2023, 9: eadf1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xin S, Zhang X, Wang L, et al. Roadmap for rechargeable batteries: present and beyond. Sci China Chem, 2023, 67: 13–42

    Article  Google Scholar 

  7. Tang W, Ma J, Zhang X, et al. Interfacial strategies towards highly stable Li-metal anode of liquid-based Li-metal batteries. Energy Storage Mater, 2024, 64: 103084

    Article  Google Scholar 

  8. Chen XR, Zhao BC, Yan C, et al. Review on Li deposition in working batteries: from nucleation to early growth. Adv Mater, 2021, 33: 2004128

    Article  CAS  Google Scholar 

  9. Choudhury S, Mangal R, Agrawal A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nano-particles. Nat Commun, 2015, 6: 10101

    Article  CAS  PubMed  Google Scholar 

  10. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2009, 22: 587–603

    Article  Google Scholar 

  11. Zhu XF, Li X, Liang TQ, et al. Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries. Rare Met, 2023, 42: 387–398

    Article  CAS  Google Scholar 

  12. Piao N, Liu S, Zhang B, et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes ACS Energy Lett, 2021, 6: 1839–1848

    Article  CAS  Google Scholar 

  13. Xu X, Yue X, Chen Y, et al. Li Plating regulation on fast-charging graphite anodes by a triglyme-LiNO3 synergistic electrolyte additive. Angew Chem Int Ed, 2023, 62: e202306963

    Article  CAS  Google Scholar 

  14. Wu Q, Li L, Zheng Y, et al. Achieving physical blocking and chemical electrocatalysis of polysulfides by using a separator coating layer in lithium–sulfur batteries. Sci China Mater, 2024, 67: 107–115

    Article  CAS  Google Scholar 

  15. Song YH, Wu KJ, Zhang TW, et al. A nacre-inspired separator coating for impact-tolerant lithium batteries. Adv Mater, 2019, 31: 1905711

    Article  CAS  Google Scholar 

  16. Huang X, He R, Li M, et al. Functionalized separator for next-generation batteries. Mater Today, 2020, 41: 143–155

    Article  CAS  Google Scholar 

  17. Yang QY, Yu Z, Li Y, et al. Understanding and modifications on lithium deposition in lithium metal batteries. Rare Met, 2022, 41: 2800–2818

    Article  CAS  Google Scholar 

  18. Zhang C, Yang Y, Sun Y, et al. 2D sp2-carbon-linked covalent organic frameworks as artificial SEI film for dendrite-free lithium metal batteries. Sci China Mater, 2023, 66: 2591–2600

    Article  CAS  Google Scholar 

  19. Wu J, Rao Z, Liu X, et al. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes. Adv Mater, 2021, 33: e2007428

    Article  PubMed  Google Scholar 

  20. Liu K, Pei A, Lee HR, et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc, 2017, 139: 4815–4820

    Article  CAS  PubMed  Google Scholar 

  21. Yu Z, Cui Y, Bao Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep Phys Sci, 2020, 1: 100119

    Article  Google Scholar 

  22. Jagger B, Pasta M. Solid electrolyte interphases in lithium metal batteries. Joule, 2023, 7: 2228–2244

    Article  CAS  Google Scholar 

  23. Han Z, Zhang C, Lin Q, et al. A protective layer for lithium metal anode: why and how. Small Methods, 2021, 5: e2001035

    Article  PubMed  Google Scholar 

  24. Chen L, Chen KS, Chen X, et al. Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Appl Mater Interfaces, 2018, 10: 26972–26981

    Article  CAS  PubMed  Google Scholar 

  25. Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater, 2021, 11: 2100046

    Article  CAS  Google Scholar 

  26. Wang W, Yue X, Meng J, et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater, 2019, 18: 414–422

    Article  Google Scholar 

  27. Chen L, Connell JG, Nie A, et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A, 2017, 5: 12297–12309

    Article  CAS  Google Scholar 

  28. Yan C, Cheng XB, Yao YX, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv Mater, 2018, 30: e1804461

    Article  PubMed  Google Scholar 

  29. Guo JC, Tan SJ, Zhang CH, et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv Mater, 2023, 35: e2300350

    Article  PubMed  Google Scholar 

  30. Alaboina PK, Rodrigues S, Rottmayer M, et al. In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition. ACS Appl Mater Interfaces, 2018, 10: 32801–32808

    Article  CAS  PubMed  Google Scholar 

  31. Pathak R, Chen K, Gurung A, et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun, 2020, 11: 93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gu M, Rao AM, Zhou J, et al. In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ Sci, 2023, 16: 1166–1175

    Article  CAS  Google Scholar 

  33. Chen C, Zhang J, Hu B, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat Commun, 2023, 14: 4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamate R, Peng Y, Kamiyama Y, et al. Extremely tough, stretchable gel electrolytes with strong interpolymer hydrogen bonding prepared using concentrated electrolytes to stabilize lithium-metal anodes. Adv Mater, 2023, 35: 2211679

    Article  CAS  Google Scholar 

  35. Li Q, Zeng FL, Guan YP, et al. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater, 2018, 13: 151–159

    Article  Google Scholar 

  36. Yang N, Cui Y, Su H, et al. A chemically bonded ultraconformal layer between the elastic solid electrolyte and lithium anode for high-performance lithium metal batteries. Angew Chem Int Ed, 2023, 62: e202304339

    Article  CAS  Google Scholar 

  37. Han J, Lee MJ, Min JH, et al. Fluorine-containing phase-separated polymer electrolytes enabling high-energy solid-state lithium metal batteries. Adv Funct Mater, 2024, 34: 2310801

    Article  Google Scholar 

  38. Huang J, Shen Z, Robertson SJ, et al. Fluorine grafted gel polymer electrolyte by in situ construction for high-voltage lithium metal batteries. Chem Eng J, 2023, 475: 145802

    Article  CAS  Google Scholar 

  39. Yang B, Pan Y, Li T, et al. High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes. Energy Storage Mater, 2024, 65: 103124

    Article  Google Scholar 

  40. Xue T, Qian J, Guo X, et al. Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries. Sci China Chem, 2023, 66: 2121–2129

    Article  CAS  Google Scholar 

  41. Wang Y, Wu Z, Azad FM, et al. Fluorination in advanced battery design. Nat Rev Mater, 2024, 9: 119–133

    Article  CAS  Google Scholar 

  42. Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew Chem Int Ed, 2020, 59: 6561–6566

    Article  CAS  Google Scholar 

  43. Deng Z, Huang Z, Shen Y, et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule, 2020, 4: 2017–2029

    Article  CAS  Google Scholar 

  44. Deng Z, Lin X, Huang Z, et al. Recent progress on advanced imaging techniques for lithium-ion batteries. Adv Energy Mater, 2020, 11: 2000806

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2023YFB2503801), the National Natural Science Foundation of China (Grant Nos. 52302253, and 5202780089), the Key Program of the National Natural Science Foundation of China (Grant No. 52231009), the Fundamental Research Funds for the Central Universities (HUST: 2172020kfyXJJS089), Key R&D Program of Hubei Province (2023BAB028). The authors thank the Analytical and Testing Centre of HUST and the State Key Laboratory of Materials Processing and Die & Mold Technology of HUST for XRD and SEM measurements. The authors thank the Neware Technology Limited for the electrochemical testing. Thanks to eceshi (www.eceshi.com) for FTIR.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Kong J and Hou T conceived the project. Kong J designed the experiments and collected all data, Deng X, Li J helped with the characterization and data analysis. Kong J wrote the paper with support from Shi T, Hou T. Li D, Xu H and Huang Y provided critical feedback and helped shape the manuscript.

Corresponding authors

Correspondence to Dinggen Li  (李顶根), Yunhui Huang  (黄云辉) or Henghui Xu  (许恒辉).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Jia Kong is currently a Master degree candidate at the School of Materials Science and Engineering, Huazhong University of Science and Technology. His current research mainly focuses on lithium metal batteries.

Henghui Xu received his PhD at Huazhong University of Science and Technology (HUST) in 2015, followed by a five-year postdoctoral research at The University of Texas at Austin. He is now a Professor of materials science in HUST working on solid-state batteries.

Yunhui Huang received his BS, MS, and PhD degrees from Peking University. From 2002 to 2004, he worked as an associate professor at Fudan University. He then worked with Prof. John B. Goodenough at the University of Texas at Austin for more than three years. In 2008, he became a chair professor of materials science at Huazhong University of Science and Technology. His research group works on rechargeable batteries and electrode materials.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Hou, T., Shi, T. et al. A tough, resilient, and fluorinated solid-electrolyte interphase stabilizing lithium metal in carbonate electrolytes. Sci. China Mater. 67, 1403–1411 (2024). https://doi.org/10.1007/s40843-024-2914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2914-x

Keywords

Navigation