Skip to main content
Log in

Aerosol Types Identification over the Arabian Peninsula Using AERONET Products: Evaluation with Multisource Datasets

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Knowing aerosol size and composition is essential for studying aerosol radiative forcing (ARF) and human health impacts, identifying their sources, and improving satellite aerosol estimation methods. An aerosol classification technique (T1) is proposed here using K-mean clustering analysis based on Aerosol Optical Depth (AOD500 nm) vs Angstrom Exponent (AE440–870 nm) data (1999–2018) from Aerosol Robotic Network (AERONET) in the Arabian Peninsula. The proposed classified aerosol types are: (1) Clean background/clean maritime (CB/CM): AOD < 0.20 & AE < 1.35; (2) Clean Continental (CC): AOD < 0.20 & AE > 1.35; (3) Desert Dust (DD): AOD > 0.20 & AE < 0.6; (4) Dusty Mixture (DM): AOD > 0.20 & 0.60 < AE < 1.0; (5) Urban Industrial (UI): AOD > 0.20 & 1.0 < AE < 1.35; and (6) Biomass Burning (BB): AOD > 0.20 & AE > 1.35. Further verification of our results was conducted with respect to AERONET depolarization ratio (δ), surface observations (e.g., wind speed, relative humidity, and visibility), and dust RGB products from Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG) satellite. The T1 reveals that DD was prevalent at the Solar Village in Riyadh (51%), and the KAUST Campus (47.65%) and Hada-El-Sham (37.39%) in Jeddah. Additionally, urban industrial and biomass burning aerosol types were observed due to an increase in industrial activities and biofuel emissions. The evaluation study showed that other previously published techniques (e.g., T2, T3, and T4) misclassified aerosol types, whereas T1 significantly classified aerosol types. Moreover, back trajectory analysis based on the NOAA HYSPLIT model demonstrated that the predominant DD- and other-aerosols originated and transported from both local and external sources of the Arabian Peninsula. Finally, the study examined ARF from AERONET and SBDART (the Santa Barbara DISTORT Atmospheric Radiative Transfer) models, which found that scattering radiation at the top and bottom of the atmosphere cooled the atmosphere, while absorbing radiation within the atmosphere heated the atmosphere. As a result of the present study, specific aerosol types are now classified and recognized as well as they may have a direct impact on local and regional climate change and radiation budget over the Arabian Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on request.

References

  • Alam K, Trautmann T, Blaschke T, Subhan F (2014) Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens Environ 143:216–227

    Article  Google Scholar 

  • Albugami S, Palmer S, Cinnamon J, Meersmans J (2019) Spatial and temporal variations in the incidence of dust storms in Saudi Arabia revealed from in situ observations. Geosciences 9:162. https://doi.org/10.3390/geosciences9040162

    Article  Google Scholar 

  • Alharbi BH, Moied K (2005) Riyadh air quality report (1999–2004). King Abdulaziz City for Science and Technology 279-25-ER, p 116

  • Ali MA, Assiri ME (2016) Spatio-temporal analysis of aerosol concentration over Saudi Arabia using satellite remote sensing techniques. Malays J Soc Space 12:1–11

    Google Scholar 

  • Ali MA, Assiri M, Dambul R (2017) Seasonal aerosol optical depth (AOD) variability using satellite data and its comparison over Saudi Arabia for the period 2002–2013. Aero Air Qual Res 17:1267–1280

    Article  Google Scholar 

  • Ali MA, Islam MM, Islam MN, Almazroui M (2019) Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmos Res 215:268–283

    Article  Google Scholar 

  • Ali MA, Nichol JE, Bilal M, Qiu Z, Mazhar U, Wahiduzzaman M, Almazroui M, Islam MN (2020) Classification of aerosols over Saudi Arabia from 2004–2016. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2020.117785

    Article  Google Scholar 

  • Ali MA, Bilal M, Wang Y et al (2022a) Spatiotemporal changes in aerosols over Bangladesh using 18 years of MODIS and reanalysis data. J Environ Manag 315:115097. https://doi.org/10.1016/j.jenvman.2022.115097

    Article  CAS  Google Scholar 

  • Ali MA, Bilal M, Wang Y et al (2022b) Accuracy assessment of CAMS and MERRA-2 reanalysis PM25 and PM10 concentrations over China. Atmos Environ 288:119297. https://doi.org/10.1016/j.atmosenv.2022.119297

    Article  CAS  Google Scholar 

  • Ali MA, Huang Z, Bilal M et al (2023a) Long-term PM2.5 pollution over China: identification of PM2.5 pollution hotspots and source contributions. Sci Total Environ 893:164871. https://doi.org/10.1016/j.scitotenv.2023.164871

    Article  CAS  Google Scholar 

  • Ali MA, Wang Y, Bilal M et al (2023b) Trace gases over land and ocean surfaces of China: hotspots, trends, and source contributions. Earth Syst Environ 7:801–819. https://doi.org/10.1007/s41748-023-00354-0

    Article  Google Scholar 

  • Almazroui M (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414. https://doi.org/10.1016/j.atmosres.2010.11.006

    Article  Google Scholar 

  • Almazroui M (2019) A comparison study between AOD data from MODIS deep blue collections 51 and 06 and from AERONET over Saudi Arabia. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.03.040

    Article  Google Scholar 

  • Al-Salihi AM (2018) Characterization of aerosol type based on aerosol optical properties over Baghdad. Iraq Arab J Geosci 11:633

    Article  Google Scholar 

  • AMS (2001) Statement on seasonal to inter-annual climate prediction. Bull Am Meteorol Soc 82:701–703

    Article  Google Scholar 

  • Anderson HR, Atkinson RW, Bremner SA, Marston L (2003) Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk? Eur Respir J Suppl 40(Suppl):39–46

    Article  Google Scholar 

  • Bibi H, Alam K, Bibi S (2016) In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains. Atmos Res 181:106–114

    Article  CAS  Google Scholar 

  • Bibi S, Alam K, Chishtie F, Bibi H (2017) Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment. Atmos Environ 150:126–135

    Article  CAS  Google Scholar 

  • Bilal M, Nichol JE, Nazeer M (2016) Validation of aqua-MODIS C051 and C006 operational aerosol products using aeronet measurements over Pakistan. IEEE J Sel Top Appl Earth Obs Remote Sens 9:2074–2080

    Article  Google Scholar 

  • Bilal M, Ali MA, Nichol JE et al (2022) AEROsol generic classification using a novel satellite remote sensing approach (AEROSA). Front Environ Sci 10:981522. https://doi.org/10.3389/fenvs.2022.981522

    Article  Google Scholar 

  • Boiyo R, Raghavendra Kumar K, Zhao T, Guo J (2019) A 10-year record of aerosol optical properties and radiative forcing over three environmentally distinct AERONET sites in Kenya, East Africa. J Geophys Res 124:1596–1617

    Article  Google Scholar 

  • Buseck PR, Pósfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci 96(7):3372–3379

    Article  CAS  Google Scholar 

  • Butt MJ, Assiri ME, Ali MA (2017) Assessment of AOD variability over Saudi Arabia using MODIS Deep Blue products. Environ Pollut 231:143–153

    Article  CAS  Google Scholar 

  • Chen QX, Yuan Y, Shuai Y, Tan HP (2016) Graphical aerosol classification method using aerosol relative optical depth. Atmos Environ 135:84–91

    Article  CAS  Google Scholar 

  • Coen CM, Andrews E, Asmi A, Baltensperger U, Bukowieck N, Day D, Fiebig M, Fjaeraa AM, Flentje H, Hyvärinen A, Jefferson A, Jennings SG, Kouvarakis G, Lihavainen H, Lund Myhre C, Malm WC, Mihapopoulos N, Molenar JV, O’Dowd C, Ogren JA, Schichtel BA, Sheridan P, Virkkula A, Weingartner E, Weller R, Laj P (2013) Aerosol decadal trends—part 1: in-situ optical measurements at GAW and IMPROVE stations. Atmos Chem Phys 13:869–894

    Article  Google Scholar 

  • Farahat A (2016) Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): causes, effects, and aerosol categorization. Arab J Geosci 9:196

    Article  Google Scholar 

  • Farahat A (2018) Comparative analysis of MODIS, MISR and AERONET climatology over the Middle East and North Africa. Ann Geophys Discuss. https://doi.org/10.5194/angeo-2018-79

  • Farahat A, El-Askary H, Al-Shaibani A (2015) Study of aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multisensor approach combined with ground observations. Adv Meteorol 12:247531. https://doi.org/10.1155/2015/247531

    Article  Google Scholar 

  • Fleming ZL, Monks PS, Manning AJ (2012) Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39

    Article  Google Scholar 

  • Gharibzadeh M, Alam K, Abedini Y, Bidokhti AA, Masoumi A, Bibib H, Zeb B (2019) Climatological analysis of the optical properties of aerosols and their direct radiative forcing in the Middle East. J Atmos Solar Terr Phys 183:86–98

    Article  CAS  Google Scholar 

  • Ginoux PA, Prospero JM, Gill TE, Hsu C, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. https://doi.org/10.1029/2012RG000388

    Article  Google Scholar 

  • Goudie AS (2014) Desert dust and human health disorders. Environ Int 63:101–113

    Article  CAS  Google Scholar 

  • Gupta R, Somanathan E, Dey S (2016) Global warming and local air pollution have reduced wheat yields in India. Clim Change 140:593–604

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J. r. Stat. Soc. Ser. C (appl. STAT.) 28:100–108

    Google Scholar 

  • Hatzianastassiou N, Matsoukas C, Drakakis E, Stackhouse JPW, Koepke P, Fotiadi A, Pavlakis KG, Vardavas I (2007) The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS). Atmos Chem Phys 7:2585–2599

    Article  CAS  Google Scholar 

  • Haywood JM, Ramaswamy V (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J Geophys Res 103:6043–6058

    Article  CAS  Google Scholar 

  • Holben BN, Eck TF, Slutsker I et al (1998) AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Holben N, Tanr D, Smirnov A, Eck TF, Slutsker I, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman J, Castle JV, Setzer A, Markham B, Clark D, Halthore R, Karneli A, Neill NTO, Pietras C, Pinker T, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res Atmos 106:12067–12097

    Article  Google Scholar 

  • Hu Z, Liebens J, Rao KR (2008) Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study. Int J Health Geogr 7:20

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, New York, pp 595–605

    Google Scholar 

  • Islam MN, Almazroui M (2012) Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: a regional climate model study. Cim Dyn 39:2239–2250

    Google Scholar 

  • Kang J, Liu T, Keller J, Lin H (2013) Asian dust storm events are associated with an acute increase in stroke hospitalisation. J Edipemiol Community Health 67:125–131

    Google Scholar 

  • Kang L, Chen S, Huang J, Zhao S, Ma X, Yuan T, Zhang X, Xie T (2017) The spatial and temporal distributions of absorbing aerosols over East Asia. Remote Sens 9:1050. https://doi.org/10.3390/rs9101050

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Phys Discuss 7:6357–6411

    Google Scholar 

  • Khaniabadi YO, Daryanoosh SM, Amrane A, Polosa R, Hopke PK et al (2017) Impact of Middle Eastern Dust storms on human health. Atmos Poll Res 8:606–613

    Article  Google Scholar 

  • Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen L-C, Maciejczyk P (2012) Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res 3:331–340

    Article  CAS  Google Scholar 

  • Kim D, Chin M, Yu H, Eck TF, Sinyuk A, Smirnov A, Holben BN (2011) Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset. Atmos Chem Phys 11:10733–10741

    Article  CAS  Google Scholar 

  • Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016) Aerosol optical depth trend over the Middle East. Atmos Chem Phys 16:5063–5073

    Article  Google Scholar 

  • Kumar KR, Kang N, Yin Y (2017) Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China. Int J Climatol 38:320–336. https://doi.org/10.1002/joc.5178

    Article  Google Scholar 

  • Lee J, Kim J, Song C, Kim S, Chun Y, Sohn B, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:3110–3117

    Article  CAS  Google Scholar 

  • Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T (2020) Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res 116(7):1334. https://doi.org/10.1093/cvr/cvaa073

    Article  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation. Elsevier, New York, pp 1–583

    Google Scholar 

  • Logothetis S-A, Salamalikis V, Kazantzidis A (2020) Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3. Atmos Res 239:104893

    Article  CAS  Google Scholar 

  • Maghrabi AH, Alotaibi RN (2018) Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor Appl Climatol 134:1015–1026

    Article  Google Scholar 

  • Mao Q, Huang C, Chen Q, Zhang H, Yuan Y (2019) Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model. Atmos Environ 219:117057

    Article  CAS  Google Scholar 

  • Mashat AS, Alamodi AO, Ahmed HAM (2008) Diagnostic and prognostic study for dust (sand) storms over Saudi Arabia, Tech. Rep. V18_AR-26–89, King Abdulaziz University, Faculty of Meteorology, Environment and Arid Land Agriculture, Saudi Arabia, 2008.

  • Mashat AWS, Awad AM, Alamoudi AM, Assiri ME (2019) Monthly and seasonal variability of dust events over northern Saudi Arabia. Int J Climatol 40(3):1–23. https://doi.org/10.1002/joc.6290

    Article  Google Scholar 

  • Mashat AWS, Awad AM, Assiri ME, Labban AH (2020) Dynamic and synoptic study of spring dust storms over northern Saudi Arabia. Theor Appl Climatol 140:619–634

    Article  Google Scholar 

  • Mhawish A, Banerjee T, Broday DM, Misra A, Tripathi SN (2017) Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: implications of aerosols types and mass loading. Remote Sens Environ 201:297–313

    Article  Google Scholar 

  • Nafiseh E, Marjan G, Abbas R, Gabriele G (2014) Dust events, pulmonary diseases and immune system. Am J Clin Exp Immunol 3:20–29

    Google Scholar 

  • Nawaz H, Tariq S, Haq ZU et al (2023) Identifying the natural and anthropogenic drivers of absorbing aerosols using OMI data and HYSPLIT model over South Asia. Air Qual Atmos Health 16:2553–2577. https://doi.org/10.1007/s11869-023-01423-z

    Article  CAS  Google Scholar 

  • Nemuc A, Vasilescu J, Talianu C, Belegante L, Nicolae D (2013) Assessment of aerosol’s mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations. Atmos Meas Tech 6:3243–3255

    Article  Google Scholar 

  • Notaro M, Alkolibi F, Fadda E, Bakhrjy F (2013) Trajectory analysis of Saudi Arabian dust storms. J Geophys Res Atmos 118:6028–6043

    Article  Google Scholar 

  • Notaro M, Yu Y, Kalashnikova OV (2015) Regime shift in Arabian dust activity, triggered by persistent fertile crescent drought. J Geophys Res Atmos 120:10229–10249

    Article  Google Scholar 

  • Omar AH, Winker DM, Vaughan MA, Hu Y, Trepte CR, Ferrare RA, Lee K-P, Hostetler CA, Kittaka C, Rogers RR, Kuehn RE, Liu Z (2009) The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Oceanic Technol 26:1994–2014

    Article  Google Scholar 

  • Otaibi MA, Farahat A, Tawabini B, Omar MH, Ramadan E, Abuelgasim A, Singh RP (2019) Long-term aerosol trends and variability over central Saudi Arabia using optical characteristics from solar village AERONET measurements. Atmosphere 10:752

    Article  Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001(103):2810–2815

    Article  Google Scholar 

  • Pope CA (2000) III: Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108:713–723

    Article  CAS  Google Scholar 

  • Pope CA II, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Prakash PJ, Stenchikov G, Kalenderski S, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15:199–222

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002

    Article  Google Scholar 

  • Ramachandran S, Kedia S (2012) Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations. Environ Sci Pollut Res 19:2159–2171

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosol, climate, and hydrological cycle. Science 294:2119–2124

    Article  CAS  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114

    Article  Google Scholar 

  • Roshan DR, Koc M, Isaifan R, Shahid MZ, Fountoukis C (2019) Aerosol optical thickness over large urban environments of the Arabian peninsula-speciation, variability, and distributions. Atmosphere 10:228

    Article  CAS  Google Scholar 

  • Rupakheti D, Kang S, Bilal M, Gong J, Xia X, Cong Z (2019) Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: aerosol variations and sources. Atmos Environ 207:205–214

    Article  CAS  Google Scholar 

  • Sabbah I, Hasan FM (2008) Remote sensing of aerosols over the Solar Village, Saudi Arabia. Atmos Res 90:170–179

    Article  CAS  Google Scholar 

  • Sabbah I, Humood FF, Al-Kandari A, Al-Sharifi F (2012) Remote sensing of desert dust over Kuwait: long-term variation. Atmos Pollut Res 3:95–104

    Article  CAS  Google Scholar 

  • Seinfeld JH, Bretherton C, Carslaw KS, Coe H, DeMott PJ, Dunlea EJ, Feingold G, Ghan S, Guenther AB, Kahn R, Kraucunas I, Kreidenweis SM, Molina MJ, Nenes A, Penner JE, Prather KA, Ramanathan V, Ramaswamy V, Rasch PJ, Ravishankara AR, Rosenfeld D, Stephens G, Wood R (2016) Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc Natl Acad Sci 113:5787–5790

    Article  Google Scholar 

  • Shalaby A, Rappenglueck B, Eltahir EAB (2015) The climatology of dust aerosol over the Arabian Peninsula. Atmos Chem Phys Discuss 15:1523–1571

    Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349

    Article  Google Scholar 

  • Soni K, Singh S, Bano T, Tanwar RS, Nath S (2011) Wavelength dependence of the aerosol Ångström exponent and its implications over Delhi, India. Aerosol Sci Technol 45:1488–1498

    Article  CAS  Google Scholar 

  • Srivastava AK, Soni VK, Singh S, Kanawade VP, Singh N, Tiwari S, Attri SD (2015) An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study. Sci Total Environ 493:526–534

    Article  Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077

    Article  Google Scholar 

  • Tariq S, ul-Haq Z, Mariam A et al (2023) Assessment of air quality during worst wildfires in Mugla and Antalya regions of Turkey. Nat Hazards 115:1235–1254

    Article  Google Scholar 

  • Tariq S, Nisa A, ul-Haq Z, Mariam A et al (2024) Classification of aerosols using particle linear depolarization ratio (PLDR) over seven urban locations of Asia. Chemosphere 350:141119. https://doi.org/10.1016/j.chemosphere.2024.141119

    Article  CAS  Google Scholar 

  • Tian P, Zhang L, Cao X, Sun N, Mo X, Liang J, Li X, Gao X, Zhang B, Wang H (2018) Enhanced bottom-of-the-atmosphere cooling and atmosphere heating efficiency by mixed-type aerosols: a classification based on aerosol nonsphericity. J Atmos Sci 75:113–124

    Article  Google Scholar 

  • Vishkaee FA, Flamant C, Cuesta J et al (2011) Multiplatform observations of dust vertical distribution during transport over Northwest Iran in the summertime. J Geophys Res 116:D05206

    Google Scholar 

  • Yu Y, Notaro M, Liu Z, Kalashnikova O, Alkolibi F, Fadda E, Bakhrjy F (2013) Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J Geophys Res Atmos 118:13253–13264

    Article  Google Scholar 

  • Yu Y, Notaro M, Kalashnikova OV, Garay MJ (2015) Climatology of summer Shamal wind in the Middle East. J Geophys Res Atmos 121:289–305

    Article  Google Scholar 

  • Yu X, Kumar KR, Lü R, Ma J (2016) Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing. Environ Pollut 210:217–226

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2005) The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect 113(8):978–982

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NASA for providing AERONET data (https://aeronet.gsfc.nasa.gov/). We would like to give special thanks to EUMETSAT and Wyoming University for making the MSG dust-related and surface observation data available.

Funding

This work does not get any funding from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen E. Assiri.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 6313 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assiri, M.E. Aerosol Types Identification over the Arabian Peninsula Using AERONET Products: Evaluation with Multisource Datasets. Earth Syst Environ 8, 483–499 (2024). https://doi.org/10.1007/s41748-024-00389-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-024-00389-x

Keywords

Navigation