Skip to main content

Advertisement

Log in

A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the past few years, South Asian region has experienced frequent and thick smog events because of rapid population growth and enhanced anthropogenic activities, particularly in the Indo-Gangetic Plain (IGP). Therefore, the present study investigates aerosol properties such as aerosol optical depth (AOD) (500 nm), Angstrom exponent (AE) (440–870 nm), single scattering albedo (SSA), fine-mode fraction (FMF), absorption aerosol optical depth (AAOD), and absorption aerosol exponent (AAE) over selected AERONET sites namely Bhola (2012–2021), Dhaka (2012–2021), Jaipur (2011–2021), Kanpur (2011–2021), Karachi (2011–2021), Lahore (2011–2021), and Pokhara (2011–2021) in the IGP during the smog period (October, November, and December). Additionally, different aerosol types were categorized using AERONET direct sun (AOD, AE) and inversion products (VSD, SSA, RI, FMF, and ASY). The monthly mean AOD, AE, and FMF varied from ⁓0.33 to 1.07, ⁓0.3 to 1.4, and 0.6–0.9 µm over all selected AERONET sites during the smog period. Moreover, the outcomes revealed the dominance of biomass-burning and urban/ industrial aerosols over Lahore, Karachi, Dhaka, and Bhola during the smog period. Contrary to this, dust and mixed aerosols were abundant over Jaipur and Karachi, respectively. Furthermore, HYSPLIT cluster analysis is used to trace the transmission paths and potential sources of aerosols over selected sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

If requested, we are available to publicize the data of the paper.

References

  • Alam K, Shaheen K, Blaschke T, Chishtie F, Khan HU, Haq BS (2016) Classification of aerosols in an urban environment based on optical measurements. Aero Air Qual Res 16:2535–2549

    Article  Google Scholar 

  • Ali MA, Assiri M, Dambul R (2017) Seasonal aerosol optical depth (AOD) variability using satellite data and its comparison over Saudi Arabia for the period 2002–2013. Aero Air Qual Res 17:1267–1280

    Article  Google Scholar 

  • Ali MA, Assiri ME (2019) Analysis of AOD from MODIS- merged DT–DB products over the Arabian Peninsula. Earth Sys Envir 3:625–636

    Article  Google Scholar 

  • Ali MA, Islam MM, Islam MN, Almazroui M (2019) Investigations of MODIS AOD and cloud properties with CERES sensor-based net cloud radiative effect and an NOAA HYSPLIT model over Bangladesh for the period 2001–2016. Atmos Res 215:268–283

    Article  Google Scholar 

  • Almazroui M (2019) A comparison study between AOD data from MODIS deep blue collections 51 and 06 and from AERONET over Saudi Arabia. Atmos Res 225:88–95

    Article  Google Scholar 

  • Al-Salihi AM (2018) Characterization of aerosol type based on aerosol optical properties over Baghdad. Iraq Arab J Geosci 11:633

    Article  Google Scholar 

  • Ali M, Tariq S, Mahmood K, Daud A, Batool A, Zia-Ul-Haq. (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac J Atmos Sci 50(2):153–162. https://doi.org/10.1007/s13143-014-0004-y

    Article  Google Scholar 

  • Ali MA, Nichol JE, Bilal M, Qiu Z, Mazhar U, Wahiduzzaman M, Almazroui M, Islam MN (2020) Classification of aerosols over Saudi Arabia from 2004–2016. Atmos Environ 241:117–785

    Article  Google Scholar 

  • Alam K, Sahar N, Iqbal Y (2014) Aerosol characteristics and radiative forcing during pre-monsoon and post-monsoon seasons in an urban environment. Aerosol Air Qual Res 14(1):99–107. https://doi.org/10.1016/j.atmosres.2011.05.007

  • Iqbal A, Oanh NTK (2021) Assessment of acid deposition over Dhaka division using CAMx-MM5 modeling system. Atmos Pollut Res 2:452–462

    Article  Google Scholar 

  • Ahmed M, Hossain A, Akther T, Shohel M, Salam A (2018) Chemical composition and source identification of fog water at an Indo-Gangetic Plain (IGP) outlow location (Coastal Bhola Island). Bangladesh J Environ Pollut Manag 1:104

    Google Scholar 

  • Bilal M, Mhawish A, Nichol JE et al (2021) Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sens Environ 264:112617. https://doi.org/10.1016/j.rse.2021.112617

    Article  Google Scholar 

  • Bilal M, Nichol JE, Bleiweiss MP, Dubois DW (2013) A simplified high-resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sens Environ 136:135–145

    Article  Google Scholar 

  • Bibi S, Alam K, Chishtie F, Bibi H (2017) Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment. Atmos Environ 150:126–135

    Article  CAS  Google Scholar 

  • Barnaba F, Gobbi GP (2004) Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmos Chem Physi 4(9/10):2367–2391

    Article  CAS  Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the hysplit_4 modelling system for trajectories, dispersion and deposition. Australian Meteor Magaz 47:295–308

    Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res Atmos 105(D16):20673–20696. https://doi.org/10.1029/2000JD900282

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. J Environ Protect 2:6

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Munoz O, Veihelmann B, Van der Zande WJ (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res Atmos 111(D11). https://doi.org/10.1029/2005jd006619

  • Dutkiewicz VA, Alvi S, Ghauri BM, Choudhary MI, Husain L (2009) Black carbon aerosols in urban air in South Asia. Atmos Environ 43:1737–1744

    Article  CAS  Google Scholar 

  • Eck TF, Holben BN, Sinyuk A, Pinker R, Goloub P, Chen H, Chatenet B, Li Z, Singh RP, Tripathi SN (2010) Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J Geophys Res 115:D19205

    Article  Google Scholar 

  • El-Metwally M, Alfaro SC, Wahab MA, Zakey AS, Chatenet B (2010) Seasonal and inter-annual variability of the aerosol content in Cairo (Egypt) as deduced from the comparison of MODIS aerosol retrievals with direct AERONET measurements. Atmos Res 97(1–2):14–25. https://doi.org/10.1016/j.atmosres.2010.03.003

    Article  CAS  Google Scholar 

  • Filonchyk M, Yan H, Zhang Z (2019) Analysis of spatial and temporal variability of aerosol optical depth over China using MODIS combined dark target and deep blue product. Thoere Appl Climato 137(3–4):2271–2288

    Article  Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay SC (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res 112:D05207

    Google Scholar 

  • Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson R, Thompson A, Schafer J (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res 117:D17203

    Google Scholar 

  • Giles DM, Holben BN, Tripathi SN, Eck TF, Newcomb WW, Slutsker I, Dickerson RR, Thompson AM, Mattoo S, Wang SH (2011) Aerosol properties over the Indo-Gangetic Plain: a mesoscale perspective from the TIGERZ experiment. J Geophys Res 116:D18203

    Article  Google Scholar 

  • Gharibzadeh M, Alam K, Abedini Y, Bidokhti AA, Masoumi A, Bibi H (2018) Characterization of aerosol optical properties using multiple clustering techniques over Zanjan, Iran, during 2010–2013. Appl Opti 57:2881–2889

    Article  CAS  Google Scholar 

  • Giles DM, Sinyuk A, Sorokin MG, Schafer JS, Smirnov A, Slutsker I, Eck TF, Holben BN, Lewis JR, Campbell JR, Welton EJ, Korkin SV, Lyapustin AI (2019) Advancements in the aerosol robotic network (AERONET) version 3 database automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Measure Techni 12:169–209

    Article  CAS  Google Scholar 

  • Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res Atmos 106(D11):12067–12097

    Article  Google Scholar 

  • Higurashi A, Nakajima T (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett 29:1836

    Article  Google Scholar 

  • Hoppel WA, Fitzgerald JW, Larson RE (1985) Aerosol size distributions in air masses advecting off the East Coast of the United States. J Geophys Res Atmosp 90(D1):2365–2379. https://doi.org/10.1029/JD090iD01p02365

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers in climate change 2013: the physical science basis. In: Stocker TF et al (eds), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, pp 1–33

  • IPCC: Intergovernmental Panel on Climate Change (2014) Climate change 2013 – the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Joshi RM (2015) Education in South Asia. In: International Encyclopedia of the Social and Behavioral Sciences, 2nd edn. pp 194–197

  • Jeevan R et al (2020) Investigation of aerosol climatology and long-range transport of aerosols over Pokhara, Nepal. Atmosphere 11:874. https://doi.org/10.3390/atmos11080874

    Article  Google Scholar 

  • Jung CH, Lee JY, Um J, Lee SS, Yoon YJ, Kim YP (2019) Estimation of sourcebased aerosol optical properties for polydisperse aerosols from receptor models. Appl Sci 9(7):1443. https://doi.org/10.3390/app9071443

    Article  CAS  Google Scholar 

  • Jacobson MZ (2002) Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res Atmos 107(D19):ACH-16

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Physi 7:6357–6411

    Google Scholar 

  • Kaskaoutis DG, Badarinath KVS, Kharol SK, Sharma AR, Kambezidis HD (2009) Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res 114:D22204

    Article  Google Scholar 

  • Kaskaoutis DG, Grivas G, Theodosi C, Tsagkaraki M, Paraskevopoulou D, Stavroulas I, Liakakou E, Gkikas A, Hatzianastassiou N, Wu C, Gerasopoulos E (2020) Carbonaceous aerosols in contrasting atmospheric environments in Greek cities: evaluation of the EC-tracer methods for secondary organic carbon estimation. Atmosphere 11(2):161

    Article  CAS  Google Scholar 

  • Kausar S, Shah Z, Suo H, Liu M, Ma L, Alam K, Gül A, Cui J, Li C, Wang YX, Khan SB, Khan SB (2019) Aerosol clustering in an urban environment of Beijing during (2005–2017). Atmos Environ 213:534–547. https://doi.org/10.1016/j.atmosenv.2019.06.027

    Article  CAS  Google Scholar 

  • Kedia S, Ramachandran S, Holben BN, Tripathi S (2014) Quantification of aerosol type and sources of aerosols over the Indo-Gangetic Plain. Atmos Environ 98:607–619

    Article  CAS  Google Scholar 

  • Khan A et al (2011) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res 101:773–782

    Article  Google Scholar 

  • Kim D, Ramanathan V (2008) Solar radiation budget and radiative forcing due to aerosols and clouds. J Geophys Res 113:D02203

    Google Scholar 

  • Kim KW, Kim YJ, Bang SY (2008) Summer time haze characteristics of the urban atmosphere of Gwangju and the rural atmosphere of Anmyon, Korea. Environ Monit Assess 141:189–199

    Article  CAS  Google Scholar 

  • Kumar RP, J B, Samuel C, Gautam S (2022) A bibliometric and scientometric: analysis towards global pattern and trends related to aerosol and precipitation studies from 2002 to 2022. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-022-01290-0

  • Li J, Wang Z, Huang H, Hu M, Meng F, Sun Y, Wang X, Wang Y, Wang Q (2013) Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus B 65:20052

    Article  CAS  Google Scholar 

  • Lee J, Kim J, Song C, Kim S, Chun Y, Sohn B, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:3110–3117

    Article  CAS  Google Scholar 

  • Logothetis SA, Salamalikis V, Kazantzidis A (2020) Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET version 3. Atmos Res 239:104893

    Article  CAS  Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Physi 10:11017–11096. https://doi.org/10.5194/acp-10-11017-2010

    Article  CAS  Google Scholar 

  • Mamun MI, Islam M, Mondol PK (2014) The seasonal variability of aerosol optical depth over Bangladesh based on satellite data and HYSPLIT model. Am J Remote Sens 2(4):20–29. https://doi.org/10.11648/j.ajrs.20140204.11

    Article  Google Scholar 

  • Mira-Salama D, Grüning C, Jensen NR, Cavalli P, Putaud JP, Larsen BR, Raes F, Coe H (2008) Source attribution of urban smog episodes caused by coal combustion. Atmos Res 88(3–4):294–304

    Article  CAS  Google Scholar 

  • Mhawish A, Banerjee T, Sorek-Hamer M et al (2020) Estimation of high-resolution PM2.5 over the Indo-Gangetic Plain by fusion of satellite data, meteorology, and land use variables. Environ Sci Technol 54:7891–7900. https://doi.org/10.1021/ACS.EST.0C01769

    Article  CAS  Google Scholar 

  • Mhawish A, Sorek-hamer M, Chatfeld R et al (2021a) Remote sensing of environment aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000–2019). Remote Sens Environ 259:112410. https://doi.org/10.1016/j.rse.2021.112410

    Article  Google Scholar 

  • Mhawish A, Sorek-Hamer M, Chatfeld R et al (2021b) Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000–2019). Remote Sens Environ 259:112410. https://doi.org/10.1016/j.rse.2021.112410

    Article  Google Scholar 

  • Mulcahy JP, O'Dowd CD, Jennings SG (2009) Aerosol optical depth in clean marine and continental northeast Atlantic air. J Geophys Res Atmos 114 (D20). https://doi.org/10.1029/2009jd011992

  • Ningombam SS, Dumka UC, Srivastava AK, Song HJ (2020) Optical and physical properties of aerosols during active fire events occurring in the Indo-Gangetic plains: implications for aerosol radiative forcing. Atmos Environ 223:117–225. https://doi.org/10.1016/j.atmosenv.2019.117225

    Article  CAS  Google Scholar 

  • Oanh NTK, Leelasakultum K (2011) Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Sci Total Environ 409:2261–2271

    Article  Google Scholar 

  • Ommi A, Emami F, Zíková N, Hopke PK, Begum BA (2017) Trajectory-based models and remote sensing for biomass burning assessment in Bangladesh. Aerosol Air Qual Res 17:465–475. https://doi.org/10.4209/aaqr.2016.07.0304

    Article  CAS  Google Scholar 

  • O'Neill NT, Eck TF, Smirnov A, Holben BN, Thulasiraman S (2003) Spectral discrimination of coarse and fine mode optical depth. J Geophys Res 108(D17). https://doi.org/10.1029/2002JD002975

  • Parekh PP, Khwaja HA, Khan AR, Naqvi RR, Malik A, Shah SA, Khan K, Hussain G (2001) The ambient air quality of two metropolitan cities of Pakistan and its health implications. Atmos Environ 35:5971–5978

    Article  CAS  Google Scholar 

  • Pace G, di Sarra A, Meloni D, Piacentino CP (2006) Aerosol optical properties at Lampedusa (Central Mediterranean), 1. Influence of transport and identification of different aerosol types. Atmos Chem Physi 6:697–713

    Article  CAS  Google Scholar 

  • Patel PN, Dumka UC, Kaskaoutis DG, Babu KN, Mathur AK (2017) Optical and radiative properties of aerosols over Desalpar, a remote site in Western India: source identification, modification processes and aerosol type discrimination. Sci Tota Environ 575:612–627

    Article  CAS  Google Scholar 

  • Pathak B, Bhuyan PK, Gogoi M, Bhuyan K (2012) Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmos Environ 47:307–315

    Article  CAS  Google Scholar 

  • Pawar GV, Devara PCS, Aher GR (2015) Identification of aerosol types over an urban site based on air-mass trajectory classification. Atmos Res 164:142–155

    Article  Google Scholar 

  • Penning de Vries MJM, Beirle S, Hormann C, Kaiser JW, Stammes P, Tilstra LG, Wagner T (2015) A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmos Chem Physi 15(18):10597–10618

    Article  CAS  Google Scholar 

  • Petters, J.L., Saxena, V.K., Slusser, J.R., Wenny, B.N., Madronich, S (2003) Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model. J Geophys Res Atmos 108 (D9). https://doi.org/10.1029/2002JD002360

  • Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic Basin during the winter and summer seasons (2000–2005). Rem Sens Environ 107(1–2):109–119. https://doi.org/10.1016/j.rse.2006.09.026

  • Ram K, Sarin M, Sudheer A, Rengarajan R (2012) Carbonaceous and secondary inorganic aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aerosol Air Qual Res 12:359–370

    Article  CAS  Google Scholar 

  • Ramachandran S, Rupakheti M (2020) Year-round aerosol characteristics and radiative effects in the South Asian pollution outflow over a background site in the Maldives. Atmos Environ 240:117–813

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102(15):5326–5333. https://doi.org/10.1073/pnas.0500656102

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Lelieveld J, Mitra A, Althausen D, Anderson J, Andreae M, Cantrell W, Cass G, Chung C (2001) Indian ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate and the hydrological cycle. Sci 294:2119–2124

    Article  CAS  Google Scholar 

  • Ramachandran S, Kedia Sheel V (2015) Spatiotemporal characteristics of aerosols in India: observations and model simulations. Atmos Environ 116:225–244

    Article  CAS  Google Scholar 

  • Rupakheti D, Kang S, Bilal M, Gong J, Xia X, Cong Z (2019) Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: aerosol variations and sources. Atmos Environ 207:205–214

    Article  CAS  Google Scholar 

  • Rupakheti D, Kang S, Rupakheti M, Cong Z, Panday AK, Holben BN (2019) Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmos Environ 223:15–23

    CAS  Google Scholar 

  • Russell PB (2010) Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Physi 10:1155–1169

    Article  CAS  Google Scholar 

  • Rolph GD (2003) Real-time environmental applications and display system (READY). NOAA Air Resources Laboratory, Silver Spring, MD. Website (http://www.arl.noaa.gov/ready/hysplit4.html)

  • Rahman MM, Begum BA, Hopke PK, Nahar K, Thurston GD (2020) Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh. Environ Pollut 264:114–798. https://doi.org/10.1016/j.envpol.2020.114798

    Article  CAS  Google Scholar 

  • Salam A et al (2003) Aerosol chemical characteristics of an island site in the Bay of Bengal (Bhola - Bangladesh). J Environ Monit 5:483–490

    Article  CAS  Google Scholar 

  • Sunita V et al (2013) Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. Environ Monit Assess 221:201–216. https://doi.org/10.1007/s10661-013-3103-9

    Article  CAS  Google Scholar 

  • Sabetghadam, Khoshsima, M Pierleoni A (2020) Aerosol climatology and determination of different types over the semi-arid urban area of Tehran, Iran: application of multi-platform remote sensing satellite data. Atmos Poll Res11 (9):1625–1636

  • Shahid I, Shahid M, Chen Z, Asif Z (2022) Long-term variability of aerosol concentrations and optical properties over the indo-gangetic plain in South Asia. Atmosphere 13(8):1266. https://doi.org/10.3390/atmos13081266

    Article  CAS  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004a) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos 109(D23). https://doi.org/10.1029/2007JD009661

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remot Sens Environ 73(3):337–349

    Article  Google Scholar 

  • Sharma M, Kaskaoutis DG, Singh RP, Singh S (2014) Seasonal variability of atmospheric aerosol parameters over Greater Noida using ground sunphotometer observations. Aeros Air Quali Res 14:608–622

    Article  Google Scholar 

  • Sharma S (1996) Applied multivariate techniques. John Wiley & Sons Inc, New York, p 493

    Google Scholar 

  • Singh A, Srivastava AK, Pathak V, Shukla AK (2022) Quantifying the impact of biomass burning and dust storm activities on aerosol characteristics over the Indo-Gangetic Basin. Atmos Environ 270:118893. https://doi.org/10.1016/J.ATMOSENV.2021.118893

    Article  CAS  Google Scholar 

  • Srivastava AK, Tripathi SN, Dey S et al (2012) Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements. Atmos Res 109–110:64–75. https://doi.org/10.1016/j.atmosres.2012.02.010

    Article  CAS  Google Scholar 

  • Soni M, Chandel AS, Verma S, Payra S, Prakash D, Holben B (2021) Aerosols properties over desert infuenced locations situated in four diferent continents. Atmos Environ 248(January):118232. https://doi.org/10.1016/j.atmosenv.2021.118232

    Article  CAS  Google Scholar 

  • Sinyuk, A., Torres, O., Dubovik, O (2003) Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys Res Lett 30(2) https://doi.org/10.1029/2002GL016189

  • Tao M, Chen L, Wang Z, Tao J, Su L (2013) Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmos Environ 79:632–340

    Article  CAS  Google Scholar 

  • Tariq S, Ul-Haq Z, Ali M (2015) Analysis of optical and physical properties of aerosols during crop residue burning event of October 2010 over Lahore, Pakistan. Atmos Pollut Res 6(6):969–978. https://doi.org/10.1016/J.APR.2015.05.002

    Article  Google Scholar 

  • Tariq S, Qayyum F, Ul-Haq Z, Mehmood U (2022) Long-term spatiotemporal trends in aerosol optical depth and its relationship with enhanced vegetation index and meteorological parameters over South Asia. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17887-4

    Article  Google Scholar 

  • Tariq S, Zia ul H, Ali M (2016) Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan. Asia-Pacific J Atmos Sci 52:25–33. https://doi.org/10.1007/S13143-015-0084-3

    Article  Google Scholar 

  • Tariq S, Haq Z (2019) Investigating the aerosol optical depth and Angstrom exponent and their relationships with meteorological parameters over Lahore in Pakistan. Proc Natl Acad Sci India Sect A 90(5):861–867

    Article  Google Scholar 

  • Tiwari S, Hopke PK, Pipal AS, Srivastava A, Bisht DS, Tiwari S, Singh AK, Soni VK, Attri SD (2015) Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmos Res 166:223–232. https://doi.org/10.1016/j.atmosres.2015.07.007

    Article  CAS  Google Scholar 

  • UNEP (2008) United Nations Environment Programme and Development Alternatives (2008), South Asia Environment Outlook 2009: UNEP, SAARC and DA. United Nations Environment Programme (UNEP)

  • Valentini S, Barnaba F, Bernardoni V, Calzolai G, Costabile F, Di Liberto L, Forello AC, Gobbi GP, Gualtieri M, Lucarelli F, Nava S (2020) Classifying aerosol particles through the combination of optical and physical-chemical properties: results from a wintertime campaign in Rome (Italy). Atmos Res 235:104–799

    Article  Google Scholar 

  • Verma S, Payra S, Gautam R, Prakash D, Soni M, Holben B, Bell S (2013) Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. Environ Monit Assess 185(9):7327–7342. https://doi.org/10.1007/s10661-013-3103-9

    Article  CAS  Google Scholar 

  • Wang S, Fang L, Gu X, Yu T, Gao J (2011) Comparison of aerosol optical properties from Beijing and Kanpur. Atmos Environ 45:7406–7414

    Article  CAS  Google Scholar 

  • Wang Y, Yao L, Wang L, Liu Z, Ji D, Tang G, Zhang J, Sun Y, Hu B, Xin J (2014) Mechanism for the formation of the January 2013 heavy haze pollution episode over Central and eastern China. Sci China Earth Sci 57:14–25

    Article  CAS  Google Scholar 

  • Xu X, Xie L, Yang X, Wu H, Cai L, Qi P (2020) Aerosol optical properties at seven AERONET sites over the Middle East and Eastern Mediterranean Sea. Atmos Environ 243:117–884

    Article  Google Scholar 

  • Yang CF, Lin NH, Tsay S, Maring H, Yen MS, Sheu GR, Wang S, Chi KH, Chuang MT, Fu JS, Reid JS, Lee C, Wang L, Wang J, Hsu C, Sayer AM, Holben BN, Chu Y, Nguyen XV, Liu GR (2013) An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78:1–19. https://doi.org/10.1016/j.atmosenv.2013.04.066

    Article  CAS  Google Scholar 

  • Yan Y, Fu P, Jing B et al (2017) Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Sci Total Environ 578:307–316. https://doi.org/10.1016/J.SCITOTENV.2016.10.149

    Article  CAS  Google Scholar 

  • Yu X, Kumar KS, Lü R, Ma J (2016) Changes in column aerosol optical properties during extreme hazefog episodes in January 2013 over urban Beijing. Environ Pollut 210:217–226. https://doi.org/10.1016/j.envpol.2015.12.021

    Article  CAS  Google Scholar 

  • Zhao S, Ye Y, Qin D, Yin D, Longxiang D (2018) Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos Poll Res 1–41

  • Zaman S et al (2021) Spatial and temporal variation of aerosol optical depths over six major cities in Bangladesh. Atmos Res 265:05–803

    Google Scholar 

  • Zhu J, Xia X, Che H, Wang J, Cong Z, Zhao T, Kang S, Zhang X, Yu X, Zhang Y (2019) Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmos Chem Phys 19(23):14637–14656. https://doi.org/10.5194/acp-19-14637-2019

    Article  CAS  Google Scholar 

  • Zhang XY, Wang JZ, Wang YQ, Liu HL, Sun JY, Zhang YM (2015) Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys 15(22)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anum Liaqut: investigation, formal analysis, and data acquisition; Salman Tariq: conceptualization, methodology, and resources; Isma Younes: review and resources. As the corresponding author, I confirm that the manuscript has been read and approved for submission by all the co-authors.

Corresponding author

Correspondence to Anum Liaqut.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

All authors allow to publish this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full). No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were the author’s own.

Supplementary Information

ESM 1

(DOCX 265 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaqut, A., Tariq, S. & Younes, I. A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing. Environ Sci Pollut Res 30, 69096–69121 (2023). https://doi.org/10.1007/s11356-023-27047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27047-5

Keywords

Navigation