Skip to main content

Advertisement

Log in

Discrimination of aerosol types over the Tehran city using 5 years (2011–2015) of MODIS collection 6 aerosol products

  • Research Article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Tehran, Iran, is an interesting location for aerosol studies because it is affected by anthropogenic pollution and desert dust aerosols. The aim of this study was to discriminate the aerosol types using satellite data over the city.

Method

The study was performed using Level-2 daily Aerosol Optical Depth (AOD) and Ångström Exponent (AE) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Terra and Aqua satellites for the years 2011 to 2015. As the Deep Blue (DB) AE retrievals are more reliable than the Dark Target (DT) AE retrievals, the study was performed using DB data.

Results

The number of granules with successful retrievals (at least in two pixels with AODs >0.2 over Tehran with high quality assurance) was 200, which indicates that aerosols could be observed in 5.47% (200 from 3652 of Terra and Aqua granules) of the overpasses during the study period. The maximum and minimum values of AOD occurred during May (0.32 ± 0.27) and August (0.18 ± 0.07), respectively. Based on the AOD vs. AE data, aerosols were classified into three different categories: urban/industry (UI), Desert Dust (DD) and Mixed (Mix). To improve the accuracy of the aerosol classification, the analysis was limited to retrievals with AOD values larger than 0.2. The DD, UI and Mix types had 48.5%, 30.5% and 21% contribution in the aerosol days, respectively.

Conclusions

The maximum DD frequency was observed in the spring and summer seasons, while the UI type had its maximum during the cold season. The AOD of the DD type (over Tehran) correlated well with the AOD observations done at the Aerosol Robotic Network (AERONET) site in Zanjan (300 km northwest from Tehran). For the UI type, no relationship with the AERONET AOD was detected. This gives confidence in our aerosol typing as the contribution of dust in the aerosol load is mainly from long-range transport, whereas the urban aerosols originate from local sources. Back trajectories ending in Tehran show that the northeast and west trajectories are two main transport routes for the dust to the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alam K, Qureshi S, Blaschke T. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ. 2011;45(27):4641–51.

    Article  CAS  Google Scholar 

  2. Albrecht BA. Aerosols, cloud microphysics, and fractional cloudiness. Science. 1989;245(4923):1227–31.

    Article  CAS  Google Scholar 

  3. Alizadeh-Choobari O, Zawar-Reza P, Sturman A. The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmos Res. 2014;15(143):328–41.

    Article  Google Scholar 

  4. Antoine D, Nobileau D. Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations. J Geophys Res Atmos. 2006;111(D12):27.

    Article  Google Scholar 

  5. Arhami M, Hosseini V, Zare M, Bigdeli M, Lai A, Schauer JJ. Seasonal trends , chemical speciation and source apportionment of fi ne PM in Tehran. Atmos Environ. 2017;153:70–82. https://doi.org/10.1016/j.atmosenv.2016.12.046.

    Article  CAS  Google Scholar 

  6. Ashrafi K, Shafiepour-Motlagh M, Aslemand A, Ghader S. Dust storm simulation over Iran using HYSPLIT. J Environ Health Sci Eng. 2014;12(1):9.

    Article  Google Scholar 

  7. Askariyeh MH, Arhami M. Projecting emission reductions from prospective mobile sources policies by road link-based modelling. Int J Environ Pollut. 2013;53(1–2):87–106.

    Article  CAS  Google Scholar 

  8. Balakrishnaiah G, Lingaswamy AP, Devi U, Reddy RR. Columnar-integrated aerosol optical properties and classification of different aerosol types over the semi-arid region, Anantapur, Andhra Pradesh. Sci Total Environ. 2015;15(527):507–19.

    Google Scholar 

  9. Barkan J, Alpert P, Kutiel H, Kishcha P. Synoptics of dust transportation days from Africa toward Italy and Central Europe. J Geophys Res Atmos. 2005;110(D7):16.

    Article  Google Scholar 

  10. Bayat A, Masoumi A, Khalesifard HR. Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran. Atmos Meas Tech. 2011;4(5):857–63.

    Article  CAS  Google Scholar 

  11. Charlson RJ, Schwartz SE. Climate forcing by anthropogenic aerosols. Science. 1992;255(5043):423–30.

    Article  CAS  Google Scholar 

  12. Deng ZQ, Han YX, Zhao Q, Li J. Aerosol vertical distribution characteristics over the Tibetan Plateau. InIOP Conference Series: Earth and Environmental Science. 2014; (Vol. 17, No. 1, p. 012004). IOP Publishing.

  13. Draxler RR, Hess, GD. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteor Mag. 1998; 47, 295–308.m.

  14. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O'neill NT, ... Kinne S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res Atmos. 1999; 104(D24):31333–31349.

  15. Escudero, M., Castillo, S., Querol, X., Avila, A., Alarcón, M., Viana, M. M., ... & Rodríguez, S. Wet and dry African dust episodes over eastern Spain. J Geophys Res Atmos. 2005;110:1–16. 110(D18). 

  16. Givehchi R, Arhami M, Tajrishy M. Contribution of the middle eastern dust source areas to PM 10 levels in urban receptors : case study of Tehran, Iran. Atmos Environ. 2013;75:287–95. https://doi.org/10.1016/j.atmosenv.2013.04.039.

    Article  CAS  Google Scholar 

  17. Halek F, Kavouci A, Montehaie H. Role of motor-vehicles and trend of air borne particulate in the great Tehran area, Iran. Int J Environ Health Res. 2004;14(4):307–13.

    Article  CAS  Google Scholar 

  18. Halek F, Kianpour-Rad M, Kavousirahim A. Seasonal variation in ambient PM mass and number concentrations (case study: Tehran, Iran). Environ Monit Assess. 2010;169(1–4):501–7.

    Article  Google Scholar 

  19. Higurashi A, Nakajima T. Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett. 2002;1(29):17.

    Google Scholar 

  20. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ. 1998;66(1):1–6.

    Article  Google Scholar 

  21. Hosseinpoor AR, Forouzanfar MH, Yunesian M, Asghari F, Naieni KH, Farhood D. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: a time-series study. Environ Res. 2005;99(1):126–31.

    Article  CAS  Google Scholar 

  22. Hsu NC, Tsay SC, King MD, Herman JR. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans Geosci Remote Sens. 2006;44(11):3180–95.

    Article  Google Scholar 

  23. Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, et al. Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos. 2013;118(16):9296–315.

    Article  Google Scholar 

  24. Hui CAO, Jian LIU, Guizhou W, Guang Y, Lei LUO. Identification of sand and dust storm source areas in Iran. J Arid Land. 2015;7(5):567–78. https://doi.org/10.1007/s40333-015-0127-8.

    Article  Google Scholar 

  25. Ignatov A, Stowe L, Singh R. Sensitivity study of the Ångstrom exponent. Adv Space Res. 1998;21(3):439–42.

    Article  Google Scholar 

  26. Kabanov DM, Panchenko MV, Sakerin SM, Turchinovich SA, Shmargunov VP, Rostov A P, ... Lisitzyn AP. Results of the investigations of aerosol characteristics over the Caspian Sea during the 29th cruise of the research vessel rift. Atmos Oceanic Opt. 2009; 22(6): 567–574. https://doi.org/10.1134/S1024856009060013.

  27. Kalapureddy MC, Kaskaoutis DG, Ernest Raj P, Devara PC, Kambezidis HD, Kosmopoulos PG, et al. Identification of aerosol type over the Arabian Sea in the premonsoon season during the integrated campaign for aerosols, gases and radiation budget (ICARB). J Geophys Res Atmos. 2009;114(D17). 

  28. Karami S, Ranjbar A, Mohebalhojeh AR, Moradi M. A rare case of haboob in Tehran: observational and numerical study. Atmos Res. 2017;1(185):169–85.

    Article  Google Scholar 

  29. Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KV. Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites. Atmos Chem Phys Discuss. 2007a;30(3):7347–97.

    Article  Google Scholar 

  30. Kaskaoutis DG, Kosmopoulos P, Kambezidis HD, Nastos PT. Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data. Atmos Environ. 2007b;41(34):7315–29.

    Article  CAS  Google Scholar 

  31. Kaskaoutis DG, Badarinath KV, Kumar Kharol S, Rani Sharma A, Kambezidis HD. Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res Atmos. 2009;114(D22):27.

    Article  Google Scholar 

  32. Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD. Characterising the long-range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. Int J Climatol. 2012;32(8):1249–70.

    Article  Google Scholar 

  33. Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, Holben BN. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res Atmos. 1997;102(D14):17051–67.

    Article  CAS  Google Scholar 

  34. Khoshsima M, Bidokhti AA, Ahmadi-Givi F. Variations of aerosol optical depth and angstrom parameters at a suburban location in Iran during 2009–2010. J Earth Syst Sci. 2014;123(1):187–99.

    Article  Google Scholar 

  35. Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer SE, et al. An AeroCom initial assessment–optical properties in aerosol component modules of global models. Atmos Chem Phys Discuss. 2005;5(5):8285–330.

    Article  Google Scholar 

  36. Kumar TK, Gadhavi H, Jayaraman A, Suman MS, Rao SV. Temporal and spatial variability of aerosol optical depth over South India as inferred from MODIS. J Atmos Sol Terr Phys. 2013;1(94):71–80.

    Article  Google Scholar 

  37. Léon JF, Chazette P, Dulac F. Retrieval and monitoring of aerosol optical thickness over an urban area by spaceborne and ground-based remote sensing. Appl Opt. 1999;38(33):6918–26.

    Article  Google Scholar 

  38. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res Atmos. 2007;112(D13):16.

    Google Scholar 

  39. Li C, Hsu NC, Tsay SC. A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmos Environ. 2011;45(22):3663–75.

    Article  CAS  Google Scholar 

  40. Masoumi A, Khalesifard HR, Bayat A, Moradhaseli R. Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran. Atmos Res. 2013;1(120):343–55.

    Article  Google Scholar 

  41. Meloni D, Di Sarra A, Biavati G, DeLuisi JJ, Monteleone F, Pace G, et al. Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos Environ. 2007;41(14):3041–56.

    Article  CAS  Google Scholar 

  42. Mohammadi F, Kamali S, Eskandary M. Tracing dust sources in different atmosphere levels of Tehran using hybrid single-particle lagrangian integrated trajectory (HYSPLIT) model. Geography and environ. haz. 2016; 11–14.

  43. Moorthy KK, Satheesh SK, Babu SS, Dutt CB. Integrated campaign for aerosols, gases and radiation budget (ICARB): an overview. J Earth Syst Sci. 2008;117(1):243–62.

    Article  CAS  Google Scholar 

  44. Moridnejad A, Karimi N, Ariya PA. Newly desertified regions in Iraq and its surrounding areas: significant novel sources of global dust particles. J Arid Environ. 2015;31(116):1–10.

    Article  Google Scholar 

  45. Orlovsky L, Orlovsky N, Durdyev A. Dust storms in Turkmenistan. J Arid Environ. 2005;60(1):83–97.

    Article  Google Scholar 

  46. Paasonen P, Asmi A, Petäjä T, Kajos MK, Äijälä M, Junninen H, et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat Geosci. 2013;6(6):438–42.

    Article  CAS  Google Scholar 

  47. Pace G, Sarra AD, Meloni D, Piacentino S, Chamard P. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos Chem Phys. 2006;6(3):697–713.

    Article  CAS  Google Scholar 

  48. Papadimas, C. D., Hatzianastassiou, N., Mihalopoulos, N., Querol, X., & Vardavas, I. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J Geophys Res Atmos. 2008; 113(D11).

  49. Pathak B, Bhuyan PK, Gogoi M, Bhuyan K. Seasonal heterogeneity in aerosol types over Dibrugarh-north-eastern India. Atmos Environ. 2012;47:307–15.

    Article  CAS  Google Scholar 

  50. Ramanathan VC, Crutzen PJ, Kiehl JT, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science. 2001;294(5549):2119–24.

    Article  CAS  Google Scholar 

  51. Redfern H, Williams RG. Remote sensing: latest developments and uses. Water Environ J. 1996;10(6):423–8.

    Article  Google Scholar 

  52. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H. MODIS: advanced facility instrument for studies of the earth as a system. IEEE Trans Geosci Remote Sens. 1989;27(2):145–53.

    Article  Google Scholar 

  53. Saniei R, Zangiabadi A, Sharifikia M, Ghavidel Y. Air quality classification and its temporal trend in Tehran, Iran, 2002–2012. Geospat Health. 2016;11(2).

  54. Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ. Validation and uncertainty estimates for MODIS collection 6 “deep blue” aerosol data. J Geophys Res Atmos. 2013;118(14):7864–72.

    Article  Google Scholar 

  55. Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong MJ. MODIS collection 6 aerosol products: comparison between Aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos. 2014;119(24).

  56. Shahbazi H, Reyhanian M, Hosseini V, Afshin H. The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran : an emission inventory approach. 2016; 44–56. https://doi.org/10.1007/s40825-015-0031-x.

  57. Shahsavani A, Naddafi K, Haghighifard NJ, Mesdaghinia A, Yunesian M, Nabizadeh R, et al. The evaluation of PM10, PM2. 5, and PM1 concentrations during the middle eastern dust (MED) events in Ahvaz, Iran, from April through September 2010. J Arid Environ. 2012;77:72–83.

    Article  Google Scholar 

  58. Stevens B, Feingold G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature. 2009;461(7264):607–13.

    Article  CAS  Google Scholar 

  59. Sullivan RC, Levy RC, Pryor SC. Spatiotemporal coherence of mean and extreme aerosol particle events over eastern North America as observed from satellite. Atmos Environ. 2015;112:126–35. https://doi.org/10.1016/j.atmosenv.2015.04.026.

    Article  CAS  Google Scholar 

  60. Tanré D, Kaufman YJ, Herman M, Mattoo S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res Atmos. 1997;102(D14):16971–88.

    Article  Google Scholar 

  61. Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys. 2006;6(7):1777–813.

    Article  CAS  Google Scholar 

  62. Toledano C, Cachorro VE, De Frutos AM, Torres B, Berjon A, Sorribas M, et al. Airmass classification and analysis of aerosol types at El Arenosillo (Spain). J Appl Meteorol Climatol. 2009;48(5):962–81.

    Article  Google Scholar 

  63. Twomey S. Aerosols, clouds and radiation. Atmos Environ Part A. 1991;25(11):2435–42.

    Article  Google Scholar 

  64. Yu X, Lü R, Kumar KR, Ma J, Zhang Q, Jiang Y, et al. Dust aerosol properties and radiative forcing observed in spring during 2001–2014 over urban Beijing, China. Environ Sci Pollut Res. 2016;23(15):15432–42.

    Article  Google Scholar 

Download references

Acknowledgements

Analyses used in this paper were produced with AERONRT and MODIS website (http://ladsweb.nascom.nasa.gov) developed and maintained by the NASA GES DISC and. We acknowledge the mission scientists and Principal Investigators who provided the data used in this research effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuchehr Farajzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Farajzadeh, M., Mielonen, T. et al. Discrimination of aerosol types over the Tehran city using 5 years (2011–2015) of MODIS collection 6 aerosol products. J Environ Health Sci Engineer 17, 1–12 (2019). https://doi.org/10.1007/s40201-018-00321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-018-00321-2

Keywords

Navigation