Skip to main content

Advertisement

Log in

Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerosol radiative effects over two environmentally distinct locations, Kanpur (urban site) and Gandhi College (rural location) in the Indo-Gangetic plain (IGP), a regional aerosol hot spot, utilizing the measured optical and physical characteristics of aerosols, an aerosol optical properties model and a radiative transfer model, are examined. Shortwave aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) is < −12 W m − 2 over Kanpur and Gandhi College. ARF at the surface is ≥ −30 W m − 2. Atmospheric warming is maximum during premonsoon (>30 W m − 2). Shortwave atmospheric heating due to aerosols is >0.4 K/day over IGP and peaks during premonsoon at >0.6 K/day due to lower single scattering albedo (SSA) and higher surface albedo. TOA forcing is always less negative over Kanpur when compared to Gandhi College due to lower surface albedo except in postmonsoon owing to higher SSA. This happens as TOA forcing depends on SSA and surface albedo in addition to aerosol optical depth. The magnitude of longwave forcing and atmospheric cooling in an absolute sense is significantly small and contributes only about 20% or less to the net (shortwave + longwave) forcing. Aerosol radiative effects over these two locations, despite differences in aerosol characteristics, are similar, thus confirming that aerosols and their radiative influence get transported due to circulation. ARF over Kanpur and Gandhi College is an order of magnitude higher when compared to greenhouse gas forcing. A large reduction in surface reaching solar irradiance accompanied by large atmospheric warming can have implications on precipitation and hydrological cycle, and these aerosol radiative effects should be included while performing regional-scale aerosol climate assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews E, Sheridan PJ, Fiebig M, McComiskey A (2006) Ogren JA, Arnott P, Covert D, Elleman R, Gasparini R, Collins D, Jonsson H, Schmid B, Wang J (2006) Comparison of methods for deriving aerosol asymmetry parameter. J Geophys Res 111:D05S04. doi:10.1029/2004JD005734

  • Auffhammer M, Ramanathan V, Vincent JR (2006) Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci 103:19668–19672

    Article  CAS  Google Scholar 

  • Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Dubuisson P, Buriez JC, Fouquart Y (1996) High spectral resolution solar radiative transfer in absorbing and scattering media: application to the satellite simulation. J Quant Spectrosc Radiat Transfer 55:103–126

    Article  CAS  Google Scholar 

  • Eck TF, Holben BN, Dubovik O, Smirnov A, Slutsker I, Lobert JM, Ramanathan V (2001) Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000. J Geophys Res 106:28555-28566

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau, K-M, Katafos M (2009) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703

    Article  CAS  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79:931–844

    Article  Google Scholar 

  • Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Liou KN (1980) An introduction to atmospheric radiation, 392 pp. Academic, San Diego

    Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  CAS  Google Scholar 

  • Michalsky JJ, Anderson GP, Barnard J, Delamere J, Gueymard C, Kato S, Kiedron P, McComiskey A, Ricchiazzi P (2006) Shortwave radiation closure studies for clear skies during the atmospheric radiation measurement 2003 aerosol intensive observation period. J Geophys Res 111:D14S90. doi:10.1029/2005JD006341

    Article  Google Scholar 

  • Mishchenko MI, Travis LD, Kahn RA, West RA (1997) Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J Geophys Res 102:16831–16847

    Article  Google Scholar 

  • Ramachandran S, Rengarajan R, Jayaraman A, Sarin MM, Das SK (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J Geophys Res 111:D20214. doi:10.1029/2006JD007142

    Article  Google Scholar 

  • Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:D08207. doi:10.1029/2007JD008560

    Article  Google Scholar 

  • Ramachandran S, Kedia S (2010) Black carbon aerosols over an urban region: radiative forcing and climate impact. J Geophys Res 115:D10202. doi:10.1029/2009JD013560

    Article  Google Scholar 

  • Ramanathan V, Crutzen P, Kiehl JT, Rosenfeld D (2001) Aerosols, climate and the hydrological cycle. Science 294:2219–2224

    Article  Google Scholar 

  • Ramaswamy V (2002) Infrared radiation in encyclopedia of global environmental change, vol I, pp 470–475. Wiley, Hoboken

    Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART, a research and teaching tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114

    Article  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Summary for policymakers, intergovernmental panel on climate change, 142 pp. Cambridge University Press, Cambridge

    Google Scholar 

  • Srivastava AK, Tiwari S, Devara PCS, Bisht DS, Srivastava MK, Tripathi SN, Goloub P, Holben BN (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic basin: implications to climatic impact. Ann Geophys 29:789–804

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology, 666 pp. Kluwer Academic, Dordrecht

    Google Scholar 

Download references

Acknowledgements

We thank B. N. Holben, R. P. Singh and S.N. Tripathi for their efforts in establishing and maintaining the AERONET sun/sky radiometers at Kanpur and Gandhi College, the data of which are used to estimate aerosol radiative forcing reported in the study. Temperature, pressure and relative humidity are obtained from NCEP Reanalysis. Columnar ozone and water vapor are downloaded from GES-DISC, NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Kedia.

Additional information

Responsible editor: Euripides Stephanou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, S., Kedia, S. Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations. Environ Sci Pollut Res 19, 2159–2171 (2012). https://doi.org/10.1007/s11356-011-0715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0715-x

Keywords

Navigation